Rising Tides, Rising Disasters?

One more day of Harvey-related content. At least I hope. (Who knows? Maybe someone will design a fantastic retrospective graphic?) Today, however, we look at a piece from the Economist about the rising number of weather-related disasters, but thankfully falling numbers of deaths. The piece has all the full suite of graphics: choropleths, line charts, and bar charts (oh my!). But I want to look at the bar chart.

A timeline of disaster causes around the world
A timeline of disaster causes around the world

I cannot tell from this chart whether there has been any change in the individual elements, the meteorological, hydrological, or climatological disasters. And unfortunately stacked bar charts do not let us see that kind of detail. They only really allow us to see total magnitude and the changes in the element at the bottom of the stack, i.e. aligned with the baseline. So I took their chart and drew the shapes as lines and realigned everything to get this.

My take
My take

You can begin to see that meteorological might be overtaking hydrological, but it is too early to tell. And that right now, climatological causes are still far behind the other two.

Credit for the piece goes to the Economist Data Team.

Credit for mine goes to me.

Labour Marches On (into Tory Housing?)

We have a nice little piece from the Economist today, a look at the electoral majority for London-area constituencies and how their housing prices may begin to draw out priced-out Labour votes from London proper.

The political impact of scarce housing supply
The political impact of scarce housing supply

What I really like from the design side is the flip of the traditional choropleth density. In other words, we normally see the dark, rich colours representing high percentages. But here, those high majority constituencies are not the ones of focus, so they get the lighest of colours. Instead, the designers point attention to those slimmest of majorities and then offer the context of average home prices.

Credit for the piece goes to the Economist’s Data Team.

Home Vacancies in Kensington and Chelsea

I added Chelsea to make doubly certain for my Philadelphia audience that you did not think I was referring to Philly’s Kensington. Why? Because today’s piece comes from the Guardian and refers to the neighbourhood where the Grenfell Tower caught fire and the inferno killed dozens of people.

A north–south divide
A north–south divide

This is not the most complex piece, but I really like the annotations and notes on the choropleth. They add a great amount of detail and context to a graphic that I imagine many places would be okay leave as is. I can see why the colour palette differs for the two maps, but I wonder if it could have been made to work as a unified palette.

Credit for the piece goes to the Guardian graphics department.

Brexit’s Impact on Irish Shipping

Today’s post is, I think, the first time I’ve featured the Politico on my blog. Politico is, I confess, a regular part of my daily media diet. But I never thought of it as a great publication for data visualisation. Maybe that is changing?

Anyway, today’s post highlights an article on how the Irish shipping/logistics industry could be affected by Brexit. To do so, they looked at data sets including destinations, port volume, and travel times. Basically, the imposition of customs controls at the Irish border will mean increased travelling times, which are not so great for time-sensitive shipments.

This screenshot if of an animated .gif showing how pre-Brexit transit was conducted through the UK to English Channel ports and then on into the continent. Post-Brexit, to maintain freedom of movement, freight would have to transit the Irish Sea and then the English Channel before arriving on the continent. The piece continues with a few other charts.

Brexit strikes again
Brexit strikes again

My only question would be, is the animation necessary? From the scale of the graphic—it is rather large—we can see an abstracted shape of the European coastlines—that is to say it’s rather angular. I wonder if a tighter cropping on the route and then subdividing the space into three different ‘options’ would have been at least as equally effective.

Credit for the piece goes to Politico’s graphics department.

Bus Transit in Philadelphia

I have lived in Philadelphia for almost ten months now and that time can be split into two different residences. For the first, I took the El to and from Centre City. For the second, I walk to and from work. I look for living spaces near transit lines. In Chicago I took the El for eight years to get home. But to get to work, I often used the 143 express bus. Personally, I prefer trains and subways to busses—faster, dedicated right-of-way, Amtrak even has WiFi. But, busses are an integral part of a dense city’s transit network. You can cram dozens of people into one vehicle and remove several cars from the road. Here in Philadelphia, however, as the Inquirer reports, bus ridership is down over the last two years at the same time as ride-hailing apps are growing in usage.

For those interested in urban planning and transit, the article is well worth the read. But let’s look at one of the graphics for the article.

Lots of red in Centre City
Lots of red in Centre City

The map uses narrow lines for bus routes and the designer wisely chose to alternate between only two shades of a colour: high and low values of either growth (green) or decline (red). But, and this is where it might be tricky given the map, I would probably dropdown all the greys in the map to be more of an even colour. And I would ditch the heavy black lines representing borders. They draw more attention and grab the eye first, well before the movement to the green and red lines.

And the piece did a good job with the Uber time wait map comparison as well. It uses the same colour pattern and map, small multiple style, and then you can see quite clearly the loss of the entire dark purple data bin. It is a simple, but very effective graphic. My favourite kind.

Still haven't used Uber yet. Unless you count the times I'm being put into one by a friend…
Still haven’t used Uber yet. Unless you count the times I’m being put into one by a friend…

Anyway, from the data side, I would be really curious to see the breakout for trolleys versus busses—yes, folks, Philly still has several trolley lines. If only because, by looking at the map, those routes seem to be in the green and growing category. So as I complain to everyone here in Philly, Philly, build more subways (and trolleys). But, as the article shows, don’t forget about the bus network either.

Credit for the piece goes to the Inquirer graphics department.

Election Night Maps

My apologies for the radio silence, everybody. The day job has been super busy the last several weeks. I am hoping to return to the regular schedule next week. In the meantime, enjoy this from xkcd.

It looks like Texas, but when Houston falls into the sea
It looks like Texas, but when Houston falls into the sea

Credit for the piece goes to Randall Munroe.

The United States of Misspelled Werds

The National Spelling Bee was this week and Google produced a map of the words each state seeks the most help spelling goodly.

Naturally, there was a misspelling in their own graphic—unfortunately I do not have an image of that, but trust me they misspelled ninety as nintey in Maryland.

Wisconsin, you need help.

To be fair, it would take me a little while to sound out supercalifragilisticexpialidocious.
To be fair, it would take me a little while to sound out supercalifragilisticexpialidocious.

Credit for the piece goes to Googel.

Life Expectancy in the US and All Its States

Happy Monday, all.

If this week’s news cycle cooperates, I am going to try and catch up on some things I have seen over the last several weeks that got bumped because of, well, Trump usually. Today we start with a piece on life expectancy from FiveThirtyEight.

The piece begins with a standard choropleth to identify, at county levels, pockets of higher mortality. But what I really like is this small multiples map of the United States. It shows the changes in life expectancy for all 50 states. And the use of colour quickly shows, for those states drastically different than the national average, are they above or below said average.

Look at all the little boxes
Look at all the little boxes

Credit for the piece goes to the FiveThirtyEight graphics department.

The Disappearing Urban Middle Class

Today we look at income in American cities and in particular the middle class disappearance. The Guardian published the graphics, but they originate with Metrocosm, LTDB at Brown, and IPUMS National Historical Geographic Information System. So what are we looking at? Well, the big one is a set of small multiples of cities and their income breakdowns as percentages of city census tracts. This screenshot is static, but the original is an animated .gif.

The flattening of the curve
The flattening of the curve

I have a few issues with the design of the graphic, the most important of which is the colour palette. If the goal is to focus on the decline of the middle class—and I admit that may be the point of the Guardian’s authors and not the original authors—why are the most visually striking colours at the top of the income distribution. Instead, you would want to draw attention to the middle of each chart, not the right. And if the idea was that the darker colours represent the higher income groups, well the positioning of each bar on the chart and the axis labelling does that already. After all, if anything, the story is that in a number of cities the middle class has shrunk while the lower income groups have grown. And you can barely see that with the lower income groups coloured yellow.

My other issues are more minor design things such as the city labelling. I kept reading the label as being below the bars, not above as it actually is.

And then I wonder if a different chart form would be more effective at showing the decline in the middle class. Perhaps a line chart plotting the beginning and end points for each cohort?

Then the piece gets into some three-dimensional maps that you can spin and rotate.

Just stop
Just stop

Yeah. Shall I count the ways? A more conventional choropleth would have served the purpose far more effectively. The dimensionality hides lower income tracts behind higher ones. The solution? Allow the user to rotate and spin the map? No, get rid of the dimensionality. It offers little to the understanding of the underlying data. Not to mention, are the areas of shadows shadows? Or are they another bin or cohort of income?

And then you have to read the piece to get a fuller understanding of my criticism.

But don’t worry, I can quote it.

Chicago was largely successful transitioning away from manufacturing to a service-based economy. This shift is evident in the bifurcated pattern present in 2015 – a heavy concentration of wealth in the business/financial district and marked decline in the surrounding area.

Those of you who read this blog from Chicago or who have lived in Chicago will pick up on it. The rest of you not so much. The concentration of wealth is not located in the business/financial district. Those dark red skyscrapers are not actual skyscrapers, they are census tracts located not in the financial district, but the areas of River North, Old Town, Gold Coast, &c. Thinking of the issue more logically, yes incomes are up in cities that are doing well. But how many of those very wealthy live on the same block as their office? Not many. Your higher income is going to be concentrated in residential or mixed-residential neighbourhoods near, but not in the business/financial district.

The data behind this work fascinates me. I just wish the final graphics had been designed with a bit more consideration for the data and the stories therein. And a little bit of proper understanding of the cities and their geography would help the text.

Credit for the piece goes to Metrocosm, LTDB at Brown University, and IPUMS National Historical Geographic Information System.