Auto Emissions Stuck in High Gear

The last two days we looked at densification in cities and how the physical size of cities grew in response to the development of transport technologies, most notably the automobile. Today we look at a New York Times article showing the growth of automobile emissions and the problem they pose for combating the greenhouse gas side of climate change.

The article is well worth a read. It shows just how problematic the auto-centric American culture is to the goal of combating climate change. The key paragraph for me occurs towards the end of the article:

Meaningfully lowering emissions from driving requires both technological and behavioral change, said Deb Niemeier, a professor of civil and environmental engineering at the University of Maryland. Fundamentally, you need to make vehicles pollute less, make people drive less, or both, she said.

Of course the key to that is probably in the range of both.

The star of the piece is the map showing the carbon dioxide emissions on the roads from passenger and freight traffic. Spoiler: not good.

From this I blame the Schuylkill, Rte 202, the Blue Route, I-95, and just all the highways
From this I blame the Schuylkill, Rte 202, the Blue Route, I-95, and just all the highways

Each MSA is outlined in black and is selectable. The designers chose well by setting the state borders in a light grey to differentiate them from when the MSA crosses state lines, as the Philadelphia one does, encompassing parts of Pennsylvania, New Jersey, Delaware, and Maryland. A slight opacity appears when the user mouses over the MSA. Additionally a little box remains up once the MSA is selected to show the region’s key datapoints: the aggregate increase and the per capita increase. Again, for Philly, not good. But it could be worse. Phoenix, which surpassed Philadelphia proper in population, has seen its total emissions grow 291%, its per capita growth at 86%. My only gripe is that I wish I could see the entire US map in one view.

The piece also includes some nice charts showing how automobile emissions compare to other sources. Yet another spoiler: not good.

I've got it: wind-powered cars with solar panels on the bonnet.
I’ve got it: wind-powered cars with solar panels on the bonnet.

Since 1990, automobile emissions have surpassed both industry emissions and more recently electrical generation emissions (think shuttered coal plants). Here what I would have really enjoyed is for the share of auto emissions to be treated like that share of total emissions. That is, the line chart does a great job showing how auto emissions have surpassed all other sources. But the stacked chart does not do as great a job. The user can sort of see how passenger vehicles have plateaued, but have yet to decline whereas lorries have increased in recent years. (I would suspect due to increased deliveries of online-ordered goods, but that is pure speculation.) But a line chart would show that a little bit more clearly.

Finally, we have a larger line chart that plots each city’s emissions. As with the map, the key thing here is the aggregate vs. per capita numbers. When one continues to scroll through, the lines all change.

Lots of people means lots of emissions.
Lots of people means lots of emissions.
There's driving in the Philadelphia area, but it's not as bad as it could be.
There’s driving in the Philadelphia area, but it’s not as bad as it could be.

Very quickly one can see how large cities like New York have large aggregate emissions because millions of people live there. But then at a per capita level, the less dense, more sprawl-y cities tend to shoot up the list as they are generally more car dependent.

Credit for the piece goes to Nadja Popovich and Denise Lu.

Urban Heat Islands

Yesterday was the first day of 32º+C (90º+F) in Philadelphia in October in 78 years. Gross. But it made me remember this piece last month from NPR that looked at the correlation between extreme urban heat islands and areas of urban poverty. In addition to the narrative—well worth the read—the piece makes use of choropleths for various US cities to explore said relationship.

My neighbourhood's not bad, but thankfully I live next to a park.
My neighbourhood’s not bad, but thankfully I live next to a park.

As graphics go, these are effective. I don’t love the pure gradient from minimum to maximum, however, my bigger point is about the use of the choropleth compared to perhaps a scatter plot. In these graphics that are trying to show a correlation between impoverished districts and extreme heat, I wonder if a more technical scatterplot showing correlation would be effective.

Another approach could be to map the actual strength of the correlation. What if the designers had created a metric or value to capture the average relationship between income and heat. In that case, each neighbourhood could be mapped as how far above or below that value they are. Because here, the user is forced to mentally transpose the one map atop the other, which is not easy.

For those of you from Chicago, that city is rated as weak or no correlation to the moderately correlated Philadelphia.

I lived near the lake for eight years, and that does a great deal for mitigating temperature extremes.
I lived near the lake for eight years, and that does a great deal for mitigating temperature extremes.

Granted, that kind of scatterplot probably requires more explanation, and the user cannot quickly find their local neighbourhood, but the graphics could show the correlation more clearly that way.

Finally, it goes almost without saying that I do not love the red/green colour palette. I would have preferred a more colour-blind friendly red/blue or green/purple. Ultimately though, a clearer top label would obviate the need for any colour differentiation at all. The same colour could be used for each metric since they never directly interact.

Overall this is a strong piece and speaks to an important topic. But the graphics could be a wee bit more effective with just a few tweaks.

Credit for the piece goes to Meg Anderson and Sean McMinn.

It’s Getting Hot in Here

The UN climate summit begins in New York today. So let’s take a look at another data visualisation piece exploring climate change data. This one comes from a Washington Post article that, while largely driven by a textual narrative, does make use of some nice maps.

Ugh.
Ugh.

There is nothing too crazy going on with the actual map itself. I like the subtle use here of a stepped gradient for the legend. This allows for a clearer differentiation between adjacent regions and just how, well, bad things have become.

But where the piece shines is about halfway through. It takes this same map and essentially filters it. It starts with those regions with temperature changes over 2ºC. Then it progressively adds slightly less hotter regions to the map.

I mean at least it could be worse?
I mean at least it could be worse?

It’s a nice use of scrolling and filtering to highlight the areas worst impacted and then move down the horrible impact scale. And because this happens in the middle of the piece, giving it the full column width (online) allows the reader to really focus on the impacts.

Credit for the piece goes to Chris Mooney and John Muyskens.

Greenland Is Melting

There is a lot going on in the world—here’s looking at you Brexit vote today—but I did not want to miss this frightening article from the BBC on the melting of Greenland’s ice. It’s happening. And it’s happening faster than thought.

There are several insightful graphics, including the standard photo slider of before and after, a line chart showing the forecast rise of sea levels within the possible range. But this one caught my eye.

Alarming rates along the coast.
Alarming rates along the coast.

The colour palette here works fairly well. The darkest reds are not matched by a dark blue, but that is because the ice gain does not match the ice loss. Usually we might see a dark blue just to pair with a dark red, but again, we don’t because the designers recognised that, as another chart shows, the ice loss is outweighing the gains, though there are some to be found most notably at the centre of the ice sheets. This is a small detail, but something that struck me as impressive.

My only nitpick is that the legend does not quantify the amounts of gain or loss. That could show the extremes and reinforce the point that the loss is dwarfing the gain.

Credit for the piece goes to the BBC graphics department.

The Amazon Burns

The G7 conference in France wrapped up yesterday and they announced an aid package for Brazil. Why? Because satellite data from both Brazil and the United States points to a rash of fires devastating the Amazon rainforest, the world’s largest carbon sink, or sometimes known as the lungs of the Earth. I have not had time to check this statistic, but I read that 1/5 the world’s oxygen comes from the Amazon ecosystem. I imagine it is a large percentage given the area and the number of trees, but 20% seems high.

Regardless, it is on fire. Some is certainly caused by drier conditions and lightning strikes. But most is manmade. And so after the Brazilian president  Jair Bolsonaro said his country did not have the resources to fight the fires, the G7 offered aid.

This morning, Bolsonaro refused it.

And so we have this map from InfoAmazonia that takes NASA data on observed fires for all of South America. I cropped my screencapture to Brazil.

You should also see the smoke maps
You should also see the smoke maps

A key feature to note here, in addition to that black background approach, is that you will see three distinct features: yellow hotspots fading to cold black areas, yellow dots with red outlines, and red dots. Each means something different. The yellow to red to black gradient simply means frequency of fires, the yellow dots with red outlines represent significantly hot fires from 2002 through 2014. The red dots are what concern us. Those are fires within the last month.

Sure enough, we see lots of fires breaking out across the Amazon. And Bolsonaro not only rejected the aid, but a few weeks ago he rejected similar data. He fired the head of a government agency tasked with tracking the deforestation of the Amazon after he released the agency’s monthly report detailing the deforestation. It had risen by 39%.

From a design standpoint, it is a solid piece. I do wonder, however, if some kind of toggle for the three datasets could have been added. Given the focus on the new fires breaking out, isolating those compared to the historic fires would be useful.

But before wrapping up, I also want to point out that there are a significant number of red dots appearing outside Brazil. The Amazon exists beyond borders, and there are a significant number of fires in neighbouring Bolivia and Paraguay. Let alone around the world…

Credit for the piece goes to InfoAmazonia.org.

Hotter Muggier Faster

Last week we looked at a few posts that showed the future impact of climate change at both a global and US-level scale. In the midst of last week and those articles, the Washington Post looked backwards at the past century or so to identify how quickly the US has changed. Spoiler: some places are already significantly warmer than they have been. Spoiler two: the Northeast is one such place.

The piece is a larger and more narrative article using examples and anecdotes to make its point. But it does contain several key graphics. The first is a big map that shows how temperature has changed since 1895.

The Southeast is an anomaly, but its warming has accelerated since the 1960s
The Southeast is an anomaly, but its warming has accelerated since the 1960s

The map does what it has to and is nothing particularly fancy or groundbreaking—see what I did there?—in design. But it is clear and communicates effectively the dramatic shifts in particular regions.

The more interesting part, along with what we looked at last week, is the ability to choose a particular county and see how it has trended since 1895 and compare that to the baseline, US-level average. Naturally, some counties have been warming faster, others slower. Philadelphia County, the entirety of the city, has warmed more than the US average, but thankfully less than the Northeast average as the article points out.

This ain't so good
This ain’t so good

But, not to leave out Chicago as I did last week, Cook County, Illinois is right on line with the US average.

Nor is this, but it's average
Nor is this, but it’s average

But the big cities on the West Coast look very unattractive.

Tinseltown is out of the question
Tinseltown is out of the question

The interactive piece does a nice job clearly focusing the user’s attention on the long run average through the coloured lines instead of focusing attention on the yearly deviations, which can vary significantly from year to year.

And for those Americans who are not familiar with Celsius, one degree Celsius equals approximately 1.8º Fahrenheit.

Overall this is a solid piece that continues to show just what future generations are going to have to fix.

Credit for the piece goes to Steven Mufson, Chris Mooney, Juliet Eilperin, John Muyskens, and Salwan Georges.

How Warm Will It Get? Part II

Yesterday we looked at a nice piece from the BBC showing how big cities across the world will warm from the impact of climate change. It did a really nice job of showcasing the numbers. But it was admittedly number heavy. (And for the Americans in my audience, you probably were left out in the…cold…because the rest of the world uses Celsius to talk temperature.)

But this piece from the University of Maryland is something I have been raving about for weeks now. Generally speaking, people are able to better internalise data and information when they can compare it to something tangible or familiar. And degrees of Celsius, whilst accurate, fail to do that. So this piece takes their 2080 forecast and compares it to today, but in terms of place.

Ew. Just eeww.
Ew. Just eeww.

The above map is for Philadelphia. It shows how by 2080, according to a current emissions model, the city’s climate will best resemble that of Memphis, Tennessee and the lower Mississippi River Valley. Or, similar to the tidal regions of North Carolina. Having been to Memphis in the summer once, none of those are pleasant comparisons.

And for those of you in Chicago, it does not get a whole lot better.

Not as ew-y. But still ew.
Not as ew-y. But still ew.

So while these might not be as bad, it still is a swath of the plains and the lower Ohio River Valley. And…yes, a little like today’s climate here in Philadelphia.

From a design standpoint, I probably would have used a light or greyed out map. The colours used to represent the topography are too similar to those used to define the similarity. And that can make it tricky to read.

But the true strength of this piece is the designers’ ability to link tomorrow’s climate to today’s by use of space. And as I said at the beginning, I have been talking about this piece offline for weeks. And I likely will for weeks to come.

Credit for the piece goes to Matthew C. Fitzpatrick and Robert R. Dunn .

How Warm Will It Get?

In Philadelphia, this summer has been warmer than average. But with most recent years being warmer than average, that might not mean much. However, a valid question is that with climate change, how much warmer will the city get on average? The BBC recently published an article that explored the temperature changes in cities around the world according to several different models for best to worst case scenarios.

The raw data so to speak
The raw data so to speak

It does a nice job via scrolling of showing how the averages work as a rolling average and the increase over time. It runs through each scenario, from best case to worst case, as a dotted line and then plots each in comparison to each other to show the range of possible outcomes.

Ew. Just ew.
Ew. Just ew.

I know that dark or black background is in style for big pieces. But I still do not love them. Thankfully the choice of these two colours work here. The dotted lines also work for showing the projections. And in the intermediate steps, not screencaptured, the previous projections go dark and only the current one is highlighted.

Thankfully the text boxes to the right capture the critical numbers: the actual projection numbers for the monthly average. And they tie them to the lines via the colours used.

Not shown here are a few other elements of the piece. The top of the article starts with a spinning globe that shows how the average temperature across the globe has already changed. Spoiler: not well. While the spinning globe adds some interactivity to the article, it by definition cannot display the entire world all at once, like flat, two-dimensional projections do. This makes it difficult to see impacts across the globe simultaneously. A more standard projection map could have worked really well.

Lastly, the article closes with a few stories about specific locations and how these temperature increases will impact them. These use more illustrations and text. The exception, however, is a graphic of the Arctic that shows how summer sea ice coverage has collapsed over the last few decades.

Overall this is a strong piece that shows some global impacts while allowing the user to dive down into the more granular data and see the impact on some of the world’s largest cities.

Credit for the piece goes to BBC Visual and Data Journalism team.

Water, Water Everywhere Nor Any Drop to Drink Part II

Yesterday we looked at the New York Times coverage of some water stress climate data and how some US cities fit within the context of the world’s largest cities. Well today we look at how the Washington Post covered the same data set. This time, however, they took a more domestic-centred approach and focused on the US, but at the state level.

Still no reason to move to the Southwest
Still no reason to move to the Southwest

Both pieces start with a map to anchor the piece. However, whereas the Times began with a world map, the Post uses a map of the United States. And instead of highlighting particular cities, it labels states mentioned in the following article.

Interestingly, whereas the Times piece showed areas of No Data, including sections of the desert southwest, here the Post appears to be labelling those areas as “arid area”. We also see two different approaches to handling the data display and the bin ranges. Whereas the Times used a continuous gradient the Post opts for a discrete gradient, with sharply defined edges from one bin to the next. Of course, a close examination of the Times map shows how they used a continuous gradient in the legend, but a discrete application. The discrete application makes it far easier to compare areas directly. Gradients are, by definition, harder to distinguish between relatively close areas.

The next biggest distinguishing characteristic is that the Post’s approach is not interactive. Instead, we have only static graphics. But more importantly, the Post opts for a state-level approach. The second graphic looks at the water stress level, but then plots it against daily per capita water use.

California is pretty outlying
California is pretty outlying

My question is from the data side. Whence does the water use data come? It is not exactly specified. Nor does the graphic provide any axis limits for either the x- or the y-axis. What this graphic did make me curious about, however, was the cause of the high water consumption. How much consumption is due to water-intensive agricultural purposes? That might be a better use of the colour dimension of the graphic than tying it to the water stress levels.

The third graphic looks at the international dimension of the dataset, which is where the Times started.

China and India are really big
China and India are really big

Here we have an interesting use of area to size population. In the second graphic, each state is sized by population. Here, we have countries sized by population as well. Except, the note at the bottom of the graphic notes that neither China nor India are sized to scale. And that make sense since both countries have over a billion people. But, if the graphic is trying to use size in the one dimension, it should be consistent and make China and India enormous. If anything, it would show the scale of the problem of being high stress countries with enormous populations.

I also like how in this graphic, while it is static in nature, breaks each country into a regional classification based upon the continent where the country is located.

Overall this, like the Times piece, is a solid graphic with a few little flaws. But the fascinating bit is how the same dataset can create two stories with two different foci. One with an international flavour like that of the Times, and one of a domestic flavour like this of the Post.

Credit for the piece goes to Bonnie Berkowitz and Adrian Blanco.

Water, Water Everywhere Nor Any Drop to Drink

Most of Earth’s surface is covered by water. But, as any of you who have swallowed seawater can attest, it is not exactly drinkable. Instead, mankind evolved to drink freshwater. And as some new data suggests, that might not be as plentiful in the future because some areas are already under extreme stress. Yesterday the New York Times published an article looking at the findings.

More reasons for me not to move to the desert southwest
More reasons for me not to move to the desert southwest

The piece leads with a large map showing the degree of water stress across the globe. It uses a fairly standard yellow to red spectrum, but note the division of the labels. The High range dwarfs that of the Low, but instead of continuing on, the Extremely High range then shrinks. Unfortunately, the article does not go into the methodology behind that decision and it makes me wonder why the difference in bin sizes.

Of course, any big map makes one wonder about their own local condition. How stressed is Philadelphia, for example? Thankfully, the designers kept that in mind and created an interactive dot plot that marks where each large city falls according to the established bins.

Not so great, Philly
Not so great, Philly

At this scale, it is difficult to find a particular city. I would have liked a quick text search ability to find Philadelphia. Instead, I had to open the source code and search the text there for Philadelphia. But more curiously, I am not certain the graphic shows what the subheading says.

To understand what a third of major urban areas is, we would need to know the total number of said cities. If we knew that, a small number adjacent to the categorisation could be used to create a quick sum. Or a separate graphic showing the breakdown strictly by number of cities could also work. Because seeing where each city falls is both interesting and valuable, especially given how the shown cities are mentioned in the text—it just doesn’t fit the subheading.

But, for those of you from Chicago, I included my former home as a different screenshot. Though I didn’t need to search the source code, because I just happened across it scrolling through the article.

It helps having Lake Michigan right there
It helps having Lake Michigan right there

Credit for the piece goes to Somini Sengupta and Weiyi Cai.