Thanksgiving Side Dishes

American Thanksgiving meals often feature elaborate spreads of side dishes. And everyone has a favourite. A common theme around the holiday is for media outlets to conduct surveys to see which ones are most popular where. In today’s piece we have one such survey from pollster YouGov. In particular, I wanted to focus on a series of small multiples maps they used to illustrate the preferences.

Big splashes of colour do not necessarily make for a great map
Big splashes of colour do not necessarily make for a great map

I used to see this approach taken more often and by this I hope I do not see a foreshadow of its comeback. Here we have US states aggregated into distinct regions, e.g. the Northeast. One could get into an argument about how one defines what region. The Midwest is one often contested such region—I have one post on it dating back to at least 2014.

Instead, however, I want to focus on the distinction between states and regions. This small multiples graphic is a set of choropleth maps that use side dish preferences to colour the map. Simple enough. However, the white lines delineating states imply different fields to be coloured within the graphic. Consequently, it appears that each state within the region has the same preference at the same percentage.

The underlying data behind the maps, at least that which was released, indicates the data is not at the state level but instead at the regional level. In other words, there are no differences to be seen between, say, Pennsylvania and New Jersey. Consequently, a more appropriate map choice would have been one that omitted the state boundaries in favour of the larger outlines of the regions.

More radically, a set of bar charts would have done a better job. Consider that with the exception of fruit salad, in every map, only one region is different than the others. A bar chart would have shown the nuance separating the three regions that in almost all of these maps is lost when they all appear as one colour.

I appreciate what the designers were attempting to do, but here I would ask for seconds, as in chances.

Credit for the piece goes to the YouGov graphics team.

Food Flows Connect Counties

For my American audience, this week is Thanksgiving. That day when we give thanks for Native Americans giving European settlers their land for small pox ridden blankets. And trinkets. Don’t forget the trinkets. But we largely forget about the history and focus on three things: family, food, and American football. Not necessarily in that order.

But this week I am largely going to want to focus on the food.

Today we can look at a graphic coming from a team of researchers at the University of Illinois who examined the flows of food across the United States, down to the county level. It helped produce this map that shows the linkages between counties.

Oh look at that Mississippi River trail
Oh look at that Mississippi River trail

To be sure, the piece uses some line charts and other maps to showcase the links, but the star is really this map. But aside from its lack of Alaska and Hawaii, I think it suffers from one key design choice: leaving the county borders black.

The black lines, while thin, compete with the faint blue lines that show the numerically small links between counties. Larger trade flows, such as those within California, are clearly depicted with thicker strokes that contrast with the background political boundaries of the counties. But the light blue lines recede into the background beneath the borders.

I wonder if a map of solid, light grey fills and white county borders would have helped showcase the blue lines and thus trade flows a little bit better. After all, the problem is especially  noticeable in the eastern half of the United States where we have much geographically smaller counties.

Hat tip to friend and former colleague Michael Schaefer for sharing the article in question.

Credit for the piece goes to Megan Konar et al.

From Order to Chaos?

A few weeks ago we said farewell to John Bercow as Speaker of the House (UK). Whilst I covered the election for the new speaker, I missed the opportunity to post this piece from the BBC. It looked at Bercow’s time in office from a data perspective.

The piece did not look at him per se, but that era for the House of Commons. The graphic below was a look at what constituted debates in the chamber using words in speeches as a proxy. Shockingly, Brexit has consumed the House over the last few years.

At least climate change has also ticked upwards?
At least climate change has also ticked upwards?

I love the graphic, as it uses small multiples and fixes the axes for each row and column. It is clean, clear, and concise—just what a graphic should be.

And the rest of the piece makes smart use of graphical forms. Mostly. Smart line charts with background shading, some bar charts, and the only questionable one is where it uses emoji handclaps to represent instances of people clapping the chamber—not traditionally a thing that  happens.

Content wise it also nailed a few important things, chiefly Bercow’s penchant for big words. The piece did not, however, cover his amazing sense of sartorial style vis-a-vis neckties.

Overall a solid piece with which to begin the weekend.

Credit for the piece goes to Ed Lowther & Will Dahlgreen.

Casual Fails?

In a recent Washington Post piece, I came across a graphic style that I am not sure I can embrace. The article looked at the political trifecta at state levels, i.e. single political party control over the government (executive, lower legislative chamber, and upper legislative chamber). As a side note, I do like how they excluded Nebraska because of its unicameral legislature. It’s also theoretically non-partisan (though everybody knows who belongs to which party, so you could argue it’s as partisan as any other legislature).

At the outset, the piece uses a really nice stacked bar chart. It shows how control over the levers of state government have ebbed and flowed.

You can pretty easily spot the recent political eras by the big shifts in power.
You can pretty easily spot the recent political eras by the big shifts in power.

It also uses little black lines with almost cartoonish arrowheads to point to particular years. The annotations are themselves important to the context—pointing out the various swing years. But from an aesthetic standpoint, I have to wonder if the casualness of the marks detracts from the seriousness of the content.

Sometimes the whimsical works. Pie charts about pizza pies or pie toppings can be whimsical. A graphic about political control over government is a different subject matter. Bloomberg used to tackle annotations with a subtler and more serious, but still rounded curve type of approach. Notably, however, Bloomberg at that time went for an against the grain, design forward, stoic business serious second approach.

Then we get to a choropleth map. It shows the current state of control for each state.

X marks the spot?

X marks the spot?However, here the indicator for recent party switches is a set of x’s. These have the same casual approach as the arrows above. But in this case, a careful examination of the x’s indicates they are not unique, like a person drawing a curve with a pen tool. Instead these come from a pre-determined set as the x’s share the exact same shape, stroke lengths and directions.

In years past we probably would have seen the indicator represented by an outline of the state border or a pattern cross-hatching. After all, with the purple being lighter than the blue, the x’s appear more clearly against purple states than blue. I have to admit I did not see New Jersey at first.

Of course, in an ideal world, a box map would probably be clearer still. But the curious part is that the very next map does a great job of focusing the user’s attention on the datapoint that matters: states set for potential changes next November.

Pennsylvania is among the states…
Pennsylvania is among the states…

Here the states of little interest are greyed out. The designers use colour to display the current status of the potential trifecta states. And so I am left curious why the designers did not choose to take a similar approach with the remaining graphics in the piece.

Overall, I should say the piece is strong. The graphics generally work very well. My quibbles are with the aesthetic stylings, which seem out of place for a straight news article. Something like this could work for an opinion piece or for a different subject matter. But for politics it just struck a loud dissonant chord when I first read the piece.

Credit for the piece goes to Kate Rabinowitz and Ashlyn Still.

Americans Can’t Kick the Auto Habit

After looking this week at the growth of the physical size of cities due to improvements in transport technologies, the increasing density of cities, and then the contribution of automobile (especially personal cars) to carbon dioxide emissions, today we look at a piece from the Transport Politic comparing US and French mass transit ridership to see whether the recent decline in US ridership is inevitable or a choice made by consumers and policymakers. Spoiler: it’s not inevitable.

The article makes use of a few graphics and an interactive component. The lead-in graphic is a nice line chart that runs with the spaghetti nature of the graphic: lots of line but only two are really highlighted.

The French are definitely better than the US here.
The French are definitely better than the US here.

Light grey lines and light blue lines encode the US and French cities under study. But only the lines representing the averages of both the US and France are darkly coloured and in a thicker stroke to stand out from the rest. Normally I would not prefer the minimum of the y-axis being 50%, but here the baseline is actually 100% so the chart really works well. And interestingly it shows that prior to the Great Recession, the United States was doing better than France in adoption of mass transit, relative to 2010 numbers.

But then when you directly compare 2010 to 2018 for various US and French cities, you get an even better chart. Also you see that French cities reclaim the lead in transit growth.

A lot of declines on this side of the pond.
A lot of declines on this side of the pond.

These two static graphics, which can each be clicked to view larger, do a really great job of cutting through what some might call noise of the intervening years. I do like, much like yesterday’s post, the comparison of total or aggregate ridership to per capita numbers. It shows how even though New York’s total ridership has increased, the population has increased faster than the ridership numbers and so per capita ridership has declined. And of course as yesterday’s post examined, in the States the key to fighting climate change is reducing the number of people driving.

What I cannot quite figure out from the graphic is what the colouration of the lines mean. I thought that perhaps the black vs. grey lines meant the largest cities, but then LA would be black. Maybe for the steepest declines, but no, because both LA and Boston are grey. I also thought the grey lines might be used when black lines overlap to aid clarity, but then why is Boston in grey? Regardless, I like the choice of the overall form.

But where things go really downhill are the interactive charts.

Just what?
Just what?

Talk about unintelligible spaghetti charts. So the good. The designer kept the baseline at 100% and set the min and max around that. After that it’s a mess. Even if the colours all default to the rainbow, the ability to select and isolate a particular city would be incredibly valuable to the user. Unfortunately selecting a city does no such thing. All the other cities remain coloured, and sometimes layered atop the selected city.

I would have thrown the unselected cities into the greyscale and let the selected city rise to the top layer and remain in its colour. Let it be the focus of the user’s attention.

Or the designer could have kept to the idea in the first graphic and coloured American cities grey and French cities light blue and then let the user select one from among the set and compare that to the overall greyed/blued masses and the US and French averages.

Overall, it wasn’t a bad piece. But that final interactive bit was questionable. Unfortunately the piece started strong and ended weak, when the reverse would have been preferable.

Credit for the piece goes to Yonah Freemark.

Where Is That Pesky Mason–Dixon Line?

It’s no big secret that genealogy and family history are two of my big interests and hobbies. Consequently, on rainy days I sometimes like to enjoy an episode or two of Who Do You Think You Are (I prefer the UK version, but the American one will do too) or Finding Your Roots. So I decided to watch one last night about Megan Mullally of Will & Grace fame. Long story short, her family has a connection to Philadelphia (only one block away from where I presently live) and so I paid a bit of attention to the map.

Now, DRM prevented me from taking a straight screenshot, so this is a photo of a screen—my apologies. But there is something to point out.

Mason and Dixon would be disappointed
Mason and Dixon would be disappointed

The borders are wrong. So I made a quick annotation pointing out the highlights as it relates to Pennsylvania.

So many mistakes…
So many mistakes…

Credit for the piece goes to the Who Do You Think You Are graphics department.

The annotations are mine, though as for their geographic accuracy, they are approximate. I mean after all, I’m using Photoshop to put lines on a photograph of a laptop screen.

Urban Heat Islands

Yesterday was the first day of 32º+C (90º+F) in Philadelphia in October in 78 years. Gross. But it made me remember this piece last month from NPR that looked at the correlation between extreme urban heat islands and areas of urban poverty. In addition to the narrative—well worth the read—the piece makes use of choropleths for various US cities to explore said relationship.

My neighbourhood's not bad, but thankfully I live next to a park.
My neighbourhood’s not bad, but thankfully I live next to a park.

As graphics go, these are effective. I don’t love the pure gradient from minimum to maximum, however, my bigger point is about the use of the choropleth compared to perhaps a scatter plot. In these graphics that are trying to show a correlation between impoverished districts and extreme heat, I wonder if a more technical scatterplot showing correlation would be effective.

Another approach could be to map the actual strength of the correlation. What if the designers had created a metric or value to capture the average relationship between income and heat. In that case, each neighbourhood could be mapped as how far above or below that value they are. Because here, the user is forced to mentally transpose the one map atop the other, which is not easy.

For those of you from Chicago, that city is rated as weak or no correlation to the moderately correlated Philadelphia.

I lived near the lake for eight years, and that does a great deal for mitigating temperature extremes.
I lived near the lake for eight years, and that does a great deal for mitigating temperature extremes.

Granted, that kind of scatterplot probably requires more explanation, and the user cannot quickly find their local neighbourhood, but the graphics could show the correlation more clearly that way.

Finally, it goes almost without saying that I do not love the red/green colour palette. I would have preferred a more colour-blind friendly red/blue or green/purple. Ultimately though, a clearer top label would obviate the need for any colour differentiation at all. The same colour could be used for each metric since they never directly interact.

Overall this is a strong piece and speaks to an important topic. But the graphics could be a wee bit more effective with just a few tweaks.

Credit for the piece goes to Meg Anderson and Sean McMinn.

Baby You Can Drive My Non-automobile Personal Mode of Transportation

Last week was the climate summit in New York, and the science continues to get worse. Any real substantive progress in fighting climate change will require sacrifices and changes to the way our societies function and are organised, including spatially. Because one area that needs to be addressed is the use of personal automobiles that consume oil and emit, among other things, carbon dioxide. But living without cars is not easy in a society largely designed where they are a necessity.

But over at CityLab, Richard Florida and Charlotta Mellander created an index trying to capture the ability to live without a car. The overall piece is worth a read, but as usual I want to focus on the graphic.

The Northeast is where it's at with its dense cities designed for a pre-automobile era
The Northeast is where it’s at with its dense cities designed for a pre-automobile era

It’s nothing crazy, but it really does shine as a good example of when to use a map. First, I enjoy seeing metro maps of the United States used as choropleths, which is why I’ve made them as part of job at the Philly Fed. CityLab’s map does a good job showing there is a geographic pattern to the location of cities best situated for those trying to live a car-free life. Perhaps not surprisingly, one of the big clusters is the Northeast Corridor, including Philadelphia, which ranks as the 17th best (out of 398) and the 7th best of large metro areas (defined as more than one million people), beating out Chicago, ranked 23rd and 8th, respectively.

Design wise I have two small issues. First, I might quibble with the colour scheme. I’m not sure there is enough differentiation between the pink and light orange. A very light orange could have perhaps been a better choice. Though I am sympathetic to the need to keep that lowest bin separate from the grey.

Secondly, with the legend, because the index is a construct, I might have included some secondary labelling to help the reader understand what the numbers mean. Perhaps an arrow and some text saying something like “Easier car-free living”. Once you have read the text, it makes sense. However, viewing the graphic in isolation might not be as clear as it could be with that labelling.

Credit for the piece goes to David Montgomery.

The Map

I mean come on, guys, did you really expect me to not touch this one?

Well we made it to Friday, and naturally in the not so serious we have to cover the sharpie map. Because, if the data does not agree with your opinions, clearly the correct response is to just make shit up.

By now you have probably all heard the story about how President Trump tweeted an incorrect forecast about the path of Hurricane Dorian, warning how Alabama could be “hit (much) harder than anticipated”. Except that the forecast at the time was that Alabama wasn’t going to be hit. Cue this map, days later. As in days. As in this news story continued for days.

Note the sharpie weirdly extending the cone (in black, not the usual white) into Florida and onward into Alabama.
Note the sharpie weirdly extending the cone (in black, not the usual white) into Florida and onward into Alabama.

So to be fair, I went to the NOAA website and pulled down from their archive the cone maps from the date of the graphic Trump edited, and the one from the day when he tweeted about Alabama being hit by the hurricane.

Important to note that this forecast dates from 29 August. This press conference was on 4 September. He tweeted on 1 September. So in other words, two days after he used the wrong forecast, he had printed a big version of a contemporaneously two-day old forecast to show that if he drew a sharpie line on it, it would be correct.

Here is the original, from the National Hurricane Centre, for 29 August. Note, no Alabama.

No Alabama in this forecast, the OG, if you will (and if I'm using that term correctly).
No Alabama in this forecast, the OG, if you will (and if I’m using that term correctly).

And then Trump tweeted on 1 September. So let’s take the 02.00 Eastern time 1 September forecast from NOAA.

By 30 August the forecast was already tracking northward, not westward. So by 1 September the idea that the hurricane would hit Alabama was just nonsense.
By 30 August the forecast was already tracking northward, not westward. So by 1 September the idea that the hurricane would hit Alabama was just nonsense.

Definitely no Alabama in that forecast.

This could have all gone away if he had just admitted he looked at the wrong forecast and tweeted an incorrect warning. Instead, we had the White House pressuring NOAA to “fix” their tweet.

Now we can all chalk  this up as funny. But it does have some serious consequences. Instead of people in the actual path of Dorian preparing, because of the falsely wide range of impacts the president suggested, people in Alabama needlessly prepared for a nonevent.

But more widely, as someone who works with data on a daily basis, we need to agree that data is real. We cannot simply change the data because it does not fit the story we want to tell. If I could take a screenshot of every forecast and string them together in an animated clip, you would see there was never any forecast like the sharpie forecast. We cannot simply create our own realities and choose to live within them, because that means we have no common basis on which to disagree policy decisions that will have real world impacts.

Credit for the photo goes to Evan Vucci of the AP.

Credit for the National Hurricane Centre maps goes to its graphic team.

Merging of the States

Dorian now speeds away from Newfoundland and into the North Atlantic. We looked at its historic intensity last week. But during that week, with all the talk of maps and Alabama, I noted to myself a map from the BBC that showed the forecast path.

Did New Jersey eat Delaware?
Did New Jersey eat Delaware?

But note the state borders. New Jersey and Delaware have merged. Is it Delawarsey? And what about Maryland, Virginia, and the District of Columbia? Compare that to this map from the Guardian.

Here the states are intact
Here the states are intact

What we have are intact states. But, and it might be difficult to see at this scale, the problem may be that it appears the BBC map is using sea borders. I wonder if the Delaware Bay, which isn’t a land border, is a reason for the lack of a boundary between the two states. Similarly, is the Potomac River and its estuary the reason for a lack of a border between Virginia, Maryland, and DC?

I appreciate that land shape boundary files are easy, but they sometimes can mislead users as to actual land borders.

Credit for these pieces go the BBC graphics department and the Guardian graphics department.