Turkey Votes…Against Orange

Turkish Vote Results
Turkish Vote Results

I like maps, I really do. And I also like politics. And that means I love election maps. Or just voting maps. This here comes from a Turkish news outlet, Today’s Zaman, via the Economist’s article on the election. A (very) brief background for those unfamiliar with the matter at hand: Turkey wants to be admitted into the European Union (EU), but the EU requires reforms made to the Turkish constitution to bring Turkey up to EU standards in terms of law, liberalism, &c. All well and good, except that Turkey has a unique history of being a staunchly secular country where Islam is the dominant religion. Relaxing the rules against Turkey’s strict brand of secularism has stoked resentment and controversy from those on the staunchly secular side. And the constitutional changes that upset this group of people are being enacted by a political party whose history is that of a party based in Islam. It gets a bit tricky…

But about the graphic…

First, I think a good if not expected place to start is with the three-dimensional pie chart and map. These two visual elements add little if not subtract from the overall graphic. By putting the ‘No’ vote in the background it is made to appear smaller than the ‘Yes’ vote and can be seen as marginalising that portion of the vote. Furthermore, note the change in the colour of the type for each section of the chart. While the orange and white is certainly a high contrast, the black versus white is even higher.

As to the map, I am not an expert in Turkish geography, but this appears to simply be adding a weird three-dimensional effect to the edges of an otherwise flat map. At least I should hope the map is otherwise flat and not distorting the geography. One can always make the argument that a map is not needed to show a single datapoint, in this case the ‘victor’ in the vote. However, from the perspective of an American not familiar with Turkish provinces (assuming they are indeed called provinces), this map is far more meaningful than would a statistically  more valuable chart highlighting the discrepancy in the vote. After all the little miniature pies in each province are largely useless except in the most obvious of differences. To actually show and detail the degree of victory a bar chart for all provinces would be more useful.

Or perhaps a compromise that would show each province in a colour that reflects the overall victor, yes or no, and the degree to which that camp beat the other through use of a gradient. Would that be ideal for showing the details of the numbers? No, not at all, but it would highlight that while the ‘No’ vote was concentrated along the western and northern provinces—do they share a political similarity because of their bordering on the Aegean or some other reason?—but that the strongest ‘No’ vote was in the very northwest—geographically the most European part—of Turkey, excepting some exceptional province in the centre of the country. None of this, of course, deals with the density of the population in each province, for none of that is known to me as a non-Turkish observer.

The colours, white and orange, work when considered against the blueish background. Of course, why the bluish background? It might be a branding element or some other such visual styling well-established with the news outlet with which I am unfamiliar. But if not, it does not really add anything other than that glossy feel. The white as a choice for the ‘Yes’ vote is interesting, because it draws more attention to the presence of the ‘No’ vote in the north and west whereas the positioning of the wedges of the pie in the pie chart would hint that the important element to draw forward is that of the ‘Yes’ vote. In terms of the message or the thesis of the graphic, I am unsure. However, using white to allow the orange to come forward is itself a nice visual touch to bring out one or the other camp. Now if only I could figure out which the graphic was going for…

All in all, it is an interesting piece that puts the news story in more context than I might typically read in a straight, text-only article. It has some flaws, but that might be owing to my perspective as an outsider looking in.

Coffee Flavoured Coffee

My post is inspired by a post on FlowingData a few days ago. FlowingData’s post is about a diagram of coffee recipes and it interests me on a personal level. For long before ever designing anything professionally, I was a barista. Over three and a half years of my life were (somewhat) dedicated to crafting coffees, espressos, and on the rare occasion, tea. We used Starbucks’ recipes—and on several occasions I commented about the graphics and diagrams they sent so baristas could all be making the same drink. I may have even kept a few…but that would require some digging through some really old collections.

However, Plaid Creative made something for me. Well, me in the sense that I would like to talk about it here and now, not really for me. They created a diagram to explain the various recipes for coffee and espresso-based beverages. I am especially fond of the inclusion of Irish whiskey. However, FlowingData’s post comments upon how Plaid’s piece is in some sense an update of an earlier chart by Lokesh Dhakar, found here. (Update: So that link to Lokesh’s work is broken, here’s a link to it courtesy of The Babble Out.)

Plaid Creative's The Perfect Pour
Plaid Creative’s The Perfect Pour
Lokesh Dhakar's Illustrated Coffee Guide
Lokesh Dhakar’s Illustrated Coffee Guide

So how do these two compare?

First, keep in mind that Plaid’s is much more extensive in terms of the number of recipes examined and the number of ingredients used (or suggested). For while Dhakar’s piece uses a consistent and simple colour scheme that relates well to the subject matter, Plaid addresses the breadth of its recipes by introducing patterns and so allows for the colour scheme to still relate to the subject. I like the idea of patterns, and here they work in differentiating between the ingredients. However, it took me a little while to make sense of them all and I wonder if a small legend would not have been helpful. Or even just labelling the colours and patterns when each first appears.

However, the one thing I find most interesting about the two pieces is that Plaid represents the drinks as multiples of pie charts. The proportions of ingredients are thus wedges or slices of said pie. Dhakar’s piece instead keeps the cup form and shows the proportions as layers. (And what is noticeably helpful is that the sides of the cup are straight, making comparisons easier than they might otherwise be in cups with fancy, curving sides.) And while I prefer the aesthetic of Plaid’s piece, that Dhakar chose to show proportions as layers allows him to also show the order of events.

From personal experience, the order of events can actually impact the flavour of the drink. And to be honest, I am not certain that Dhakar intended to show order of events—for the mochas I made always started with the mocha first. But the system he used to show the drinks would theoretically allow for that element in the actual graphic. Plaid’s would likely have to have the order of events be written explicitly; the only other option is to order the arrangement of the pie wedges, but I am not certain that doing so would be as easily assumed as pies are normally ordered by value, here the proportion amounts, if ordered at all.

Both, however, do help the average Joe enjoy his, well, you know as increasingly create more and more complicated versions and variations. And in that sense, both are successful and entertaining pieces. If one, however, were to try and use either as a more educational piece in a true recipe-like sense, than I find Dhakar’s piece to the more successful of the two.

Either way, I still do not like coffee.

Computer: tea, Earl Grey, hot.

Frisky New York

Today the New York Times published an in-depth examination of NYPD stops of individuals ‘based on a reasonable suspicion of a crime’. The item includes a lengthy article; a printed, full-page information graphic; and an online, interactive piece from which the printed piece appears to be derived. The print piece is credited to Ford Fessenden and Janet Roberts, the online piece to the same along with Matthew Bloch.

Print Version

Print Version
Print Version

Online Version

Screenshot of the Online Version
Screenshot of the Online Version

Each version of the information graphic centres upon a street map of the five boroughs. Data for the number of stops is graphed at the appropriate addresses, thus making a geographically-correct map appropriate for the type of data. What is interesting is that a decision was made to represent the number of stops by means of the area of circles presumably centred upon the address or the street—each police stop is encoded into the circle by an incremental edit to the circle’s radius. This is despite the fact that area is less than an ideal means of discerning comparisons between discrete datapoints. I am left to wonder if other means of representing the data could have been perhaps more effective. Perhaps if individual streets were coloured according to a carefully crafted distribution one could see a better examination of individual streets. For while absolute fidelity would be lost in grouping datapoints into bins, individual streets and intersections would become far more visible and, perhaps, accessible. Perhaps there are even other ways of representing the data that are not so readily apparent to me.

And while on the topic of street-specific data, an interesting point about these pieces is that the online piece displays the circles atop a desaturated Google map of the region whereas the print piece is atop a stripped-down outline of the five boroughs. Some of this may well be due to the difference between the screen and print resolutions. However, I find that the Google map is distracting for displaying too much in a nearly garish fashion. To the designers’ credit, they reduced much of those distracting elements by eliminating colour from the equation. However, and perhaps this is an issue of personal aesthetics, the map is still competing too much with the circles. Despite the reduction in quality on the newsprint, I prefer the print version of the map.

That all, of course, assumes that one is looking at the full picture of the city. The online version allows one to zoom into particular neighbourhoods and intersections. To some degree this alleviates the clutter of Google’s maps but for the loss of realising the larger message. From my perspective, the printed piece provides a more interesting view of the whole story, for the large map is clearer through the reduction of extraneous map data but the interesting neighbourhood stories are highlighted on the large map with the most interesting given a detailed review. And it is in this review that the specific features of street names, buildings, &c. are made available to the audience. Indeed, the detailed look at Brownsville, Brooklyn is not available in the same level of clear, concise depth as it is in the online version.

Another advantage of the print format is the ability to present the map in a larger context and integrate stories and supplemental charts in the white space carved out by the natural geography of the boroughs. Combined, these elements occupy all the space above the fold whereas in the browser windows I used at both work and at home, only the map and one story for the selected neighbourhood is immediately visible. Thus the print’s integration, albeit made at the expense of the online’s interactive map, makes for a more inviting initial experience.

The remainder of the print and online versions are largely the same with the exception of the detail about Brownsville—which, as aforenoted, is available as a subset of of the online map and is provided outright in the print version. The space of the print version allows for the charting elements to be laid out amongst two columns whereas the online version is a single, vertical column down the webpage. Between the two versions, the largest difference is colour. I would suspect this is due to the differences in fidelity between printing the charts and viewing the charts online. I think both colours work in their respective medium.

Of the remaining graphics, the most interesting is that which displays the breakdown of stops by age in comparison to the city’s population as broken down by age. The first interesting point is the omission of a vertical scale; I can only assume that the scales are identical in both positive and negative directions. I did, however, readily understand the chart. Some may not ‘get it’ as quickly as one is asked to add the city population as it heads in a typically ‘negative’ direction. However, that the entire piece is designed to invite one to explore the statistics in detail, I think creating charts that may require some to think just a few seconds more are perfectly acceptable.

When the information graphic is combined with the whole of the article, the New York Times has again pulled off an impressive feat of editorial design that combines adeptness at the use of the English language with video and photography—from the associated multimedia from the article—along with the here-critiqued information design. Such level of depth provides a well-rounded examination of the issue or subject at hand and better informs the audience by way of both anecdote and fact while photography brings the audience visually into the story.

I Swear Periodically

This post’s image comes from my coworker Darrough, though I know not the original author of the piece. The graphic is a periodic table of swear words and so for those with sensitive ears—or perhaps eyes—I shall advise you to skip forthwith this post. Now, in general, there is little remarkable about the graphic. Many different subject matters have borrowed the motif to organise themselves.

Periodic Table of Swearing
Periodic Table of Swearing

There are a few things lacking that would make the graphic a touch more interesting; one would be some sort of rationale for as to why the author placed certain swear words into different groups. In the table for the chemical elements, the elements are arranged by their electron shells and number of protons, groups and periods. For example, the alkali metals are the first group and are among the most reactive chemical elements. Is there a link between the reactivity of lithium to that of saying cunt? Is there a link between the non-reactive elements in the noble gases, e.g. argon, and those swear words originating with the word tit? One might ordinarily assume that the first group are the most reaction-provoking swear words whereas the last group is the least reactive. However, I know people equally offended by both words.

Another interesting consideration is the colour of the piece. Broadly speaking, the colours resemble those typically seen in colouration of groups of similar elements. For example, the first few periods of Groups 14–16 share either a pink or violet-red depending upon where they fall along a diagonal axis. In the chemical element table, a three-way division of elements appears with the divisions delineating the non-metals from the metalloids from the metals. Is there a similar reasoning for the division in this chart? If so, the reason does not readily appear to me.

Another interesting note is that the ‘pissed up’ group replaces the lanthanides and actinides—which contain uranium and plutonium. However, the ordering by atomic number is incorrect and I would be curious in knowing if there is any particular reason for that decision.

One final consideration is that because I know not the origin of the piece, I cannot know the cultural background by the selection. For example, as an Anglophile American, I know well the use of bloody, twat, arse, and bollock among other words. However, most Americans would have other choice words to use in their place. Is this piece an attempt to classify perhaps British/English/Scottish swearing or is it an attempt to try and fit many English-language swear words into a single table? If the latter, I would be curious to see if there are any words of, say, Canadian, Australian, South African, or New Zealander origin that have been excluded.

All told, however, this piece is just downright entertaining and in all likelihood the author intended it to be as such. (Though I would be most curious to see an etymologically correct attempt at defining English swear words.) Aesthetically, the piece fits into the style of most old-fashioned textbook diagrams that I have seen in old textbooks.

So, all-in-all, I can sum this piece up in two words. Fucking brilliant.

New New York

Not quite of the New Earth (and therefore the 15th reincarnation of New York) variety, but, with maps being a key means of defining a city, state, or country, when a map is changed its meaning can also be changed. So, the new MTA map for New York presents some interesting changes summarised in this piece by the New York Times.

current–1998

When you compare the new map to the most recent, a few things stand out. The blue is much brighter—which I think detracts from the purpose of communicating rail routes over land—for starters. Beyond that we see that the boroughs are all larger with the exception of Staten Island. An unfortunate implication is that reducing the prominence of Staten Island on the map will, well reduce the prominence of the island to those who ride the MTA. To be fair, that is likely an acceptable trade-off given what I understand about the demographic, commercial, and cultural scales of importance between Staten Island and the other four boroughs when you factor in the need to display routes and other such transit information.

Another key change is the reduction in the additional information at the bottom of the map. Removing the text—perhaps the bus connection information referenced in the article, but as a non-New Yorker I cannot say for certain—allows one the space to make the boroughs larger. This allows the rail map to be more a map about rails than about bus connections.

All in all, the map appears an improvement. I disagree with some of the colour choice and the drop shadowing of the lines over the map. But for making the map larger and more about being a map, I could live with those changes. On the other hand, I still prefer non-geographic maps for transit maps. And so I shall never quite understand why they dismissed the Vignelli map.

current–1972

British Politics

The election has come and gone yet very little is resolved; the UK now has a hung parliament. Labour, the Tories, and the Lib Dems are now left to negotiate on the details of forming a coalition government, wherein two parties formally agree to cooperate in governing the country, or a minority government, wherein the Tories try to govern with the most seats but less than a majority. Or does Labour try to work with the Lib Dems and achieve something of a minority coalition government. The one certain thing about the election is that we now have loads of electoral data that wants to be visualised.

A few things at the top, as an American, despite my following of British politics, I am, well, an American. I am more familiar with the American system and so some of what may follow may be inaccurate. If at all, please do speak up. I should very much like to understand an electoral system that may now change entirely.

I wanted to point out a couple of sites real quick and some advantages and disadvantages thereof. Most of these were likely around before the election, however, I have been a tad busy with work and some other things to provide any commentary until now.

Auntie. The Beeb. The BBC. They have done a pretty good job at playing with four variables and the results. Are pie charts great? No. Not at all. However, they naturally limit us to 100% whereas bar charts displaying share are not necessarily as limiting—understanding that, yes, such things can be coded into the system.

BBC Sample
BBC Sample

Another interesting thing about the BBC’s electoral map is their cartographic decision to represent each constituency as a hexagon instead of overlaying the constituencies over a political map. This actually makes quite a lot of sense, however, if one considers that British constituencies are supposed to be rather equal in terms of population—not geographic area. And so while a traditional map will portray vast swathes of Tory blue and Lib Deb yellow, Labour counters in holding numerous visually insignificant constituencies in the inner cities of the UK.

Does the BBC need to represent each Commons seat as a square and arrange them to cross the majority line? Most likely not. However, it does keep with the idea of displaying each constituency as the boxes are placed next to the hexagons.

All in all, I think the BBC’s piece is quite effective. I do miss seeing the actual geography of the UK. But I understand how it is less useful in displaying the outcome of one’s playing with the electoral swing. Useful, but not necessarily needed, is the provision of several historical elections as comparisons to one’s playing.

The Guardian is next, in no particular order. Their swingometer is a bit less interesting than that of the BBC’s. Certainly in some senses it makes more sense, any bi-directional swing, while easier to grasp, ignore the complexities in having the Liberal Democrats as a viable third party and thus third axis. The circular swingometer attempts to rectify that. However, what the BBC does with their pie chart version is delve into the politics of the regional and fourth party candidates. For example, the Greens won a single constituency in southern England. In a hung parliament a single vote may be the difference between passing and defeating a bill. The BBC accounts for this while the Guardian does not.

Guardian Sample
Guardian Sample

What is particularly interesting about their calculator, however, is the ability to track individual seats and watch as one’s changes affect that particular constituency. As I play with the calculator, I can watch as Brighton Pavilion, where the Green party candidate won, changes from Labour to Conservative. However, nowhere in my exercises, have I managed to switch the seat to a fourth party candidate. The BBC solves this by not allowing one to select particular constituencies; one can only guess which seats they are looking at.

Also interesting about the Guardian’s version is their provision of different data displays. The default is a proportional representation, with each seat equating to a single square. However, they also allow one to view the results on a natural geographic level and strictly in terms of number of results and how close said results are to the magic number of 326. Additionally, the map allows you to filter for only that region of particular interest to you. If I only wish to look at, for example, the West Midlands, I can look at just the West Midlands without being distracted by additional regions. (The West Midlands provides another interesting example of being unable to factor in the role of fourth party players as Wyre Forest switched to the Conservatives, a result I cannot here duplicate.)

Three Views of One Constituency
Three Views of One Constituency

Overall, I really like how the Guardian provides different ways of viewing the data and the ability to track those changes to a particular constituency—even across the changes in data views. However, the Guardian is lacking at least in the ability to address the role of independents and regional parties. Perhaps this is do to a level of difficulty in predicting results at that level of granularity; something that is wholly understandable. However, that the BBC does just that is unfortunate for the rest of the Guardian’s piece because the rest of it is so nice. Even aesthetically, I find the Guardian’s to be appealing.

Next is the Sun. This, admittedly, is not so much a calculator but more a results map. And as such, it is effective in its simplicity. There is no messing about with swing or such—again probably because it is simply filling in constituencies by result. However, where the Sun’s piece fails is that to see any result, one needs to click a specific region. When selecting the UK, one can only see the outlines of the various regions of the UK. There appears to be no way of seeing UK-wide results.

The Sun Example
The Sun Example

Additionally, the data is presented strictly on a natural geography. This has the deficits as outlined above. And while the Guardian does present the results in such a fashion, it is not the only fashion in which data can be presented. Further, to see any results for a particular constituency, one must click all the way through the map before seeing data. None of this helps one access the actual data. And while one could say that the results are less important than showing the victor, one still needs to click into a specific region to see a victor thereby requiring a click whereas the other pieces provide results at an instant view.

Aesthetically, while both the BBC and Guardian favour a lighter, more open space the Sun’s piece feels trapped in a claustrophobic space surrounded by dark advertisements and flush against menus and heavy-handed navigation. All in all, I must confess that the Sun’s piece strikes me as an underwhelming piece that is less than wholly successful. It could have been made at least wholly successful if I needed not navigate into a particular region to mouseover a constituency.

The last piece I am going to look at is that from the Times. While there appears to be no way of playing with possible outcomes, the Times provides interesting ways of slicing the data in a more narrative structure. In terms of the map, the display suffers from being viewable only as the natural geography of the United Kingdom without being able to even toggle to a proportional view.

The Times Example
The Times Example

The additional data is displayed nicely in a side panel. I have to say that from an aesthetic standpoint, the Times’ mini site for the election results is my favourite. The black banner and main navigation sits well against the light colours used for the remainder of the piece. The serifed typeface for the numbers fits well with the newspaper feel and the black and serif combined works well to recall No. 10, Downing Street. A very nice touch and design decision.

As noted, the display fails in that only shows the data in a natural geographic sense. Now, the site overall provides links to news coverage of the event; these are accessible through a dropdown menu in the black banner. But, when clicked, these stories alter the map and highlight the particular constituencies in question. This approach provides a nice touch on straight data visualisation in linking the data to the editorial content of the newspaper. Which seats were taken or lost by independents? On a broad and filled-in map of the United Kingdom, I may not be able to know. But by clicking on that story, the map filters appropriately and I can click each constituency and get the story.
times-story-600px
And so while the data visualisation is not necessarily on par with that of the BBC and the Guardian, the tie-in with the editorial emphasis—in my mind—makes up for the lack of detail in data visualisation. Data is wonderful, however, the narrative is what helps us make sense of what is otherwise just numbers and figures.

That editorial link and the subtle design decision to link the minisite to the sort of 10 Downing Street aesthetic makes the Times version my favourite and the best designed experience. Besides the lack of detail in the data visualisation aspect, the only other drawback is perhaps the load time for each change in display.

Fire Nancy Pelosi?

Sunday night, the US House of Representatives passed a bill that you may not have heard about. The bill goes towards addressing universal healthcare coverage for US citizens. As I said, you may not have heard of it…

The bill was passed largely along partisan lines with about 30 conservative Democrats joining the conservative Republicans in voting against the legislation. This morning, the GOP unveiled a new website called Fire Nancy Pelosi that seeks to capitalise on the anger against—and perhaps even hatred for—providing healthcare to all Americans by collecting donations to capture 40 House seats in the forthcoming mid-term election. The website uses a map of the United States to show “who wants to fire Nancy Pelosi most”. According to the map, states are ranked by donation totals.

fire-pelosi-web

Without attempting to talk about the politics, the problem with the map is that it is attempting to equate the state’s supposed anger against Speaker Pelosi and healthcare for Americans with the sum of donations per state. As of the time when I captured my screen, the interesting visual is that many traditional red states are blue and purple, e.g. West Virginia and North Dakota, whereas many traditional blue states are purple and red, e.g.California and Illinois. The problem however, is that one state may be able to provide more donations than another.

The most obvious difference is in terms of population. Without access to the data I cannot state facts about exact donation totals. However, the map does break down the states into deciles and so I have quickly pulled from Wikipedia some rankings on population (from 2009) and income per capita (from 2000). What is quite clear is that the states donating the least are among the states with the smallest population. Six of the Bottom 10 donating states are from the ten smallest states. Conversely, eight of the GOP’s Top 10 Donating States are among the ten largest states in the country by population.

pelosi-states

If you compare income per capita, I find the message a bit more confusing, but still quite interesting. I do not claim to be a statistician and an analytic review of the numbers is a bit outside my area of expertise. However, for the Top 10, not a single state is ranked 40 or below in terms of income. And only one state is ranked in the 30s. One Top 10 Donating State is also found in the top ten by income per capita and a total of five of the Top 10 Donating States are in the top twenty by income per capita. Among the Bottom 10 Donating States we also find five states from the top twenty states by income per capita. However, we also find four of the last twenty states by income.

What strikes me is that the Top 10 Donating States have a larger population base from which to draw donations and, loosely, earn more per capita and thus, perhaps presumptuously, have more disposable income for contributions. The Bottom 10 Donating States have among the smallest populations and while some are seemingly quite wealthy, a significant number are among the least well-off in terms of income per capita.

And none of this critique discusses how the Top 10 Donating States use a bright and vivid red to draw attention whereas the Bottom 10 use a fairly dark and almost dull blue to push forward the bright red.

Visualising the Olympics

This weekend was pretty busy. We had another earthquake in Latin America—if one includes Haiti as part of Latin America—and the closing of the Olympics. Both have prompted some information graphics that are worth noting and comparing. I am going to leave the New York Times’ explanation of the Chilean earthquake to another post and instead focus here on the Olympics.

I wanted to look at three different visualisations of the Olympics, chiefly centred on the always popular medal count.

First we have CNN, which dedicates an entire special coverage site to the Winter Olympics. The site has the 2.0-esque feel with different boxes providing the user with different types of material: text-based stories, video, access to an interactive map, and a medal count. The map is what first strikes me because of its warning of reds and oranges and yellows. When I clicked to access the map, however, I felt disappointed in what appeared. And then I wonder why I am being warned about the US and Canada.

medal-map

Generally speaking, a lot of the world’s landmass did not participate. And of those that did, not a lot won any medals. The vast emptiness of the grey map does a disservice to those much smaller areas of the world, particularly in northern and eastern Europe, that did win but are difficult to see. And, personally speaking, as a fan of Antarctica, I was disappointed to see they neither contributed athletes nor won any medals.

What does work, however, is the idea of highlighting those nations that competed. Perhaps not everybody knows that not every nation competes. The map could have been better executed or even a more stylised visualisation of percentages of regions that competed. 7 nations on the African continent, by my quick count, did compete, while three or four European countries did not. The point is important to make. The visualisation, however, does not support it as well it could.

The medal count is also quite interesting from CNN. The special coverage site maintains a snapshot of the leader board that links to the Sports Illustrated medal count. From Sports Illustrated, we are provided a simple table-driven display of who won what with little bar charts to highlight the total medal count. By clicking on a country you see the historical details of the country’s performance, again presented as a table with a bar chart for the total medals won in each year. What I find lacking, however is ranking the countries only by total medals. If someone is more interested in the best gold-medal-winning countries, one has to work to find the data.  A simple ability to sort by medal type would be a valuable addition.

medal-count-92

An interesting situation arises, however, when looking at the historical figures. I am no expert on the Olympics. I did not watch any of them this year. Nor have I really watched them in the past. However, I do know that sports are added and subtracted. So, by clicking on Germany, for example, we see six medals won in 1936 versus the 36 in 2002. In 1936, however, I count only 51 medals total. In 2002, I count 234 medals. 12% compared to 15%. It does not seem so drastic an increase when put into context.

The BBC also has its own special coverage of the Olympics and has its own charts and tables to support the medal count. The main table they chose to use is interesting to me because it is particularly dark compared to the white and grey aesthetic of CNN and the New York Times (below). It certainly stands out. However, when I say ‘it’ I am referring not to the medal count but to the horizontal bands of dark greys and blacks. Between the dark colours, the small type for the medals, and the large flags to identify the countries, I find the medal count last. And when I find it difficult to sort by anything other than the default. But the default is not the total medal count as with CNN. Instead, it is the gold medal count. An interesting choice.

medal-count

The chart the BBC provides for total medal winnings is also interesting. You can compare across countries, years, and medals. Some of the interface makes it a bit tricky. For several minutes I was trying to figure out which years were which at the outset only to finally realise that I was looking at all years. Perhaps if even all the years were a light weight and then the year selected made bold it would be easier. Or a more noticeable shift in colour.

And then I started trying to discern between countries and was left with three-letter abbreviations for each country. And I could not. Perhaps my inability to figure out which country was which stems from my being an American. But I do like to think that I am pretty good at identifying countries. I thought if I moused over one of the stacked bars the abbreviation would reveal its true meaning to me. But it did not. And so I am left looking at stacks of medals for countries I cannot identify.

The stacked bars are interesting for they are not ideal in comparing medal counts within each country—but the mouseover state provides the required detail. Switching to the country comparison makes it a tad easier, but one must still filter medal by medal. Then aesthetically I do not care for the polished, faux-three-dimensional appearance. Nor do I think most of the bars need to be as wide as they are.

Overall, I like where the BBC was trying to go with lots of cross-comparing and filtering to break down medal counts and historical performance. However, aesthetically, I find too many elements large, bulky and distracting. From large flags and small type to black–grey bands and thick stacked bars, the interface is a tad too cluttered to really allow what the BBC did to show.

medal-comparison

Lastly, I want to look at the New York Times. Like CNN, the Times has created a map of the medal-winning countries in the Olympics, both current and historical. Unlike CNN’s map, however, the map by the Times is not based strictly on geography and each country is represented by a ‘bubble’ whose size corresponds to the number of medals won. I am not particularly keen on bubbles for displaying values. However, by eliminating those parts of the world not participating, the user can instead focus on the results. And those results, while not on a map, are spatially arranged to indicate their regional groupings. For example, the European countries are grouped together and coloured differently from those in North America. Switching tabs quickly reorganises the bubbles into rows ordered by numbers of medals won irrespective of geography.These are interesting design decisions and while I have reservations about using bubbles, the exact figures are provided as one moves his or her mouse over the bubble.

medal-map

For the medal count, we see another table. The numbers are cleanly presented with small flags to the left—and without the bars of Sports Illustrated. Like both CNN and the BBC, one can dive deeper into a nation’s particular results by clicking on that nation. Yet, the experience of clicking into a nation is much smoother with the Times than with the others. No additional pages load and I am not watching my screen jump about to and fro. Instead, the additional information loads in a panel to the right of my click. It is a quick and clean transition that does not leave my frustrated by jumping browser windows.

medal-list

Yet, the additional information loaded is quite text heavy. And with the exception of the headers for each sport, nothing in particular stands out. Not the sport, not the medal won, not the athlete who won the medal. While the quiet type is aesthetically pleasing, it lacks punch. Instead of reading the words gold, silver or bronze—since we are looking at the medals—perhaps just their icons could be used. Perhaps the athlete is in bold. I would just like something to which my eyes can be drawn in the table.

canada-detail

The New York Times effort is brilliant work. Clean and simple design brings out the information—even if such information is presented in the forms of bubbles and such. Tables are rather clean and easy to read. I think their effort a success. Not perfect, as I find the more detailed table insufficient in terms of visual distinction, but still a success.

All of the efforts are significant and worthy of mention. Each has some flaws and each has some strengths. And admittedly, each is more complex and detailed than I have described and commented upon here. But I have to stop somewhere.

Looking at the Haitian Earthquake

The BBC has posted an article addressing the causes for the horrible death toll in the Haitian earthquake last month. Charts and data-driven graphics supplement the text and provide a parallel, though not synchronous, visual story.

screenshot of BBC article

I applaud an intensive use of graphics, especially data-driven graphics, to better relate a story. Perhaps especially because not everybody can learn something simply by reading it. Many among us are instead visual learners, and by incorporating graphics into stories, be them online news articles, printed magazine articles, or interactive experiences, we can reach a larger audience and hopefully inform, impact, and influence said audience.

The graphics for the BBC article do some things well and some things not so well. Firstly, as a series, the graphics are varied well enough to not be overly repetitive. We have two sets of bar charts, three sets of area-of-circle charts (I presume), and what Nathan Yau at FlowingData called the everything chart. And if we look at the placement of the charts within the article (B for bar, A for area, and E for everything) we see A–B–E–A–B–A. The placement of the graphic types within the structure for the visual component of the article is sufficiently varied not to bore the audience.

Secondly, the graphics are well done through the restrained use of colour. Each graphic is composed of tints of grey and red. Grey is largely used as the base colour for the graphic while red or its tints accent the key elements of the visual argument. For example, when comparing the number of people dead among the affected people, a single square is coloured red. In the larger areas of grey for China and Italy, that single square or single person, while not lost, is not necessarily readily important. Instead, it serves as a link across the countries for when people look at Haiti and that red square stands out among fourteen other grey squares.

On a few other fronts, however, the graphics stumble where, if a bit more attention had been paid, they could have really strode to the front of the pack.

From the perspective of representing data, I have three qualms with the graphics. The first is somewhat minor—for it may have well been intentional. Although one of the underlying points of the article is the sheer difference in scale of the impact, the Italian earthquake is often difficult to visually compare in detail next to the Chinese and Haitian earthquakes. Why? Because the Italian numbers are visually insignificant. Could this have been resolved in a different fashion? Yes. However, as aforementioned that could have been an intentional design decision and I only point it out as something worth considering.

Secondly, and more importantly, I have concerns about the area-of-the-circle charts. Chief among those concerns is that nowhere is it specified that we are looking at area instead of, as is sometimes the case, the radius of the circle. This error is significant and I shall illustrate below. If we take, for the sake of example, a circle of radius 5 units and compare it to a circle of radius 10 units, we have a difference of 5 radius units. Circle 2 is, by one measure, twice the size of Circle 1.

And while some compare radii of circles, others instead compare areas of circle—as I assume but cannot be certain of in this instance. However, if we look at 5 units and 10 units as the radius for the areas of Circles 1 and 2, we arrive at a difference of four times the size.

diagrammatic explanation of radius vs. area

This is not a problem specific to this article—although it could have been partially solved by stating area comparison or providing a scale. Unfortunately, this problem appears with an unsettling degree of frequency. But the problem is also compounded because people are not the best judges of area. It is far easier for an individual to compare two bars and see one as twice the size than it is to compare the area of two circle and see the same difference.

The problem of comparing length to length times width for a datapoint has the fair counterpart of visual repetition aforementioned. One of the three circle charts could easily be replaced by a bar chart. The two others could also be replaced, albeit with a little more work. However, the article would then be visually boring for it would be replete with bar charts.

And so the problem of comparing areas is one to be handled carefully. This piece has some potentially serious problems in comparing data. However, the quick and easy fixes would make the piece less visually interesting and thus, perhaps, cause the reader to lose interest. And with interest lost, the reader clicks away and the article fails to make an impact. On a case-by-case basis, the designer must often make the decision between fidelity to data versus capturing the reader’s attention. And here, I think the pendulum swung just a bit too far to capture the reader’s attention.

My third major point of contention, however, concerns the data itself and an incongruity in the graphics. Understandably, the earthquake in Haiti is a recent event. And indeed, the rebuilding and thus the cost is a current and ongoing event. Therefore, nobody should expect any institution to have anything but cost estimates. The final graphic makes note of the fact that we have no hard figures and that all figures are estimates.

Yet, the graphic provides two visual estimates hinting at two substantially different figures. The straight cost is represented on a bar chart that states “estimated at several billion” but visually depicts $40 billion. The cost as relative to GDP includes an asterisk for a footnote that shows the cost as but $2 billion.

Using the estimates for an early comparison of the financial cost of the earthquake is perfectly valid so long as the numbers are noted as estimates—as they are here. However, one should use the same estimate consistently across the piece. Because here, the use of different estimates can be used to imply that the straight cost is nearly 15 times more than that of Italy’s cost. But when using the cost to compare the cost relative to the economy, Haiti’s straight cost is $500 million less than that of Italy’s cost. If anything, either the bar chart should have had no bar for Haiti, or made use of the dashed red line at the $2 billion line.

And so while I certainly have reservations about the graphics as a whole, I support the decision to use data-driven graphics to support the story and the argument.