Short and Long Term

One week ago today, President Trump touted soaring stock prices as an indicator of a roaring economy. In truth, stock market prices are not that. They are driven by fundamentals, such as GDP growth, wage increases, and inflation. Furthermore stock prices can be fickle and volatile. Whereas a recession does not begin overnight, the factors build over a period of time, a stock market correction can happen in a single day.

So one week hence, the stock market has seen fully one-third of its gains over the past year wiped out. That is over $1 trillion gone from market funds, 401ks, college saving funds, &c. But again, not to freak people out, these things can and do happen. But because they can and do happen, presidents do not often go touting the stock market as it can come back and bite them.

This morning’s paper therefore had a pleasant graphic to accompany a story about the recent declines. And it was on the front page.

The front page
The front page

Like with the choropleth story I covered a little over a week ago, the graphic in today’s paper was not revolutionary nor earth shattering. It was two line charts as one graphic. What was neat, however, was how it supported two different articles.

One graphic, two articles
One graphic, two articles

But when I looked closer I found what was really neat: context.

Notice the little arrow…
Notice the little arrow…

The chart does a great job of showing that context of adding nearly $8 trillion in value over the course of the administration. But then that sharp decline at the right-side of the chart is blown out into its own detail to show how all was steady until Friday’s economic news was released. I think perhaps the only drawback is how tiny and fragile that arrow feels. I wonder if something a little bolder would better draw the eye or connect the dots between the two charts. Maybe even moving the “… and the last week” line above the chart line would work.

Anyway, I was just curious to see how the charts were depicted on the web. And then lo and behold I was treated to two graphics on the home page. The other is for an article about flood risks to chemical plants, not part of this post. But the focus of our post on the stock market was the same as in print. But here is the homepage with two different graphics, always a treat for a designer like myself.

The New York Times homepage this morning
The New York Times homepage this morning

Credit for the piece goes to the New York Times graphics department.

An Ailing Graphic on the Healthcare Labour Force

I know I have said it before, but I like the increasing number of graphics-led articles published by Politico. Many policy and politics stories are driven—or should be driven—by data. But, myself included, we cannot hit it out of the park at every plate appearance. And that is what we have from Politico today, actually last week.

The graphic focuses on the healthcare industry and its need for a larger labour force in coming years as the baby boomers continue to age and start to retire. If their own doctors retire along with them, who will be their new doctors?

But there are two components of the graphic on which I want to focus. The first is the projection of the number of registered nurses (RNs) in 2024 compared to a 2014 baseline.

We need more. Just more.
We need more. Just more.

The story focuses on the future condition, but that colour is set to the lighter green thus drawing the reader’s eyes to the 2014 data point. Flipping those two colours would shift the focus of the chart to the 2024 timeframe, which would better match the text above.

Then we have the design decision to include a line chart for the growth rate, presumably total, for each category of RN from 2014 to 2024. The problem is that the chart itself does not sit on any baseline. While I do not care for the dual axis chart, that format at least keeps an axis legend on the right side of the chart. (You still have the problem of implying certain things based on what scale you choose to use relative to the first data series.) Here, because there is no chart lines associated with the growth data, I wonder if a table below the x-axis labels would be more efficient? Home health care, a very small category, will have the highest growth (a small change from a small base will beat the same small change or even slightly bigger changes from a far larger base) but the eye has the furthest to travel to reach the 61% number from the top of the bars or the labelling.

The other component I wanted to discuss is the scatter plot that compares the number of jobs to their average salary.

Bursting these bubbles…
Bursting these bubbles…

But this is a bubble chart, not a scatter plot, and so we have a third variable encoded in the size of the dot/bubble. The first thing I looked for was a scale for the size of the circles. What magnitude is the RN circle vs. the Personal Care Aides circle? There is none, but unfortunately that seems to be a common practice with bubble chart. But after failing to find that, I noticed that the circles decrease in size from right to left. That was when I looked to the legend and saw the y-axis in numbers of jobs and the x-axis in average salary. But then the circles are sized in proportion to the average salary of each profession to the other. In other words, the circles are basically re-plotting the x-axis. The physical therapist circle should be roughly twice as large, by area, than the vocational nurses. But we can also just see by the x-axis coordinates. The bubble chart-ness of the chart is unnecessary and the data could be told more clearly by stripping that away and making a straight-up scatter plot where all the circles are sized the same.

Credit for the piece goes to Christina Animashaun.

Get Ready Folks

Well have we got an interesting week this week. Friday begins Trump Time. So hold onto your Twitter accounts, folks. But before we get there, I wanted to do a short week of some data-driven graphics that take a look at the state of things.

Instead of what I had intended for today, let us take a look at a new post from the Wall Street Journal that examines GDP, inflation, industrial production, and the unemployment rate in advanced economies. At its most basic level, the graphics show how many of the 39 advanced economies have a value within a one-percentage point range. The size of the dots indicates how many countries fall within the bin.

A look at advanced economies' GDPs
A look at advanced economies’ GDPs

What keeps getting me, however, is the colour. Nowhere does the piece explain what the colour represents. Does it represent anything? I think it might only be used to show the ranges in the values, not the number of countries sharing said values. And if that is the case, it is a poor design decision.

My eye goes to the colour first before it goes to the dot density let alone the size of the dots. Like a Magic Eye, when I stare at the piece long enough, I begin to see the overall trend for each metric. But blink and the colours reassert their visual dominance.

I wonder what would happen if the graphic settled on a single colour? My instinct says that the patterns would become far clearer, because colour change would no longer be a visual pattern needing interpretation—even though it needs no interpretation from a data standpoint. By limiting the number of visual patterns, the piece would make the data stand out more clearly and make for clearer communication.

If an editor screams something like “It needz more colourz!!1!”, I would reserve four separate colours and then use one and only one for each of the four metrics.

That all said, what the piece does really well is explain segments of the data. In the above screenshot, you can clearly see and get the overall GDP story. But then from there you read down and get explanations or callouts of the overall to provide more context and information. The designer greys out the remainder of the dots and allows the colour to emphasise those countries in focus. A lightly transparent overlay allows for the background dots to remain faintly visible while the text can clearly be read.

All in all, I am not sure where I fall on this particular piece. It does some things well, others not so much. But either way, the piece does paint an interesting portrait of populism’s potential causes.

Credit for the piece goes to Andrew Van Dam.