Quantifying Part of the Opioid Crisis

Two weeks ago the Washington Post published a fascinating article detailing the prescription painkiller market in the United States. The Drug Enforcement Administration made the database available to the public and the Post created graphics to explore the top-line data. But the Post then went further and provided a tool allowing users to explore the data for their own home counties.

The top line data visualisation is what you would expect: choropleth maps showing the prescription and death rates. This article is a great example of when maps tell stories. Here you can clearly see that the heaviest hit areas of the crisis were Appalachia. Though that is not to say other states were not ravaged by the crisis.

There are some clear geographic patterns to see here
There are some clear geographic patterns to see here

For me, however, the true gem in this piece is the tool allowing you the user to find information on your county. Because the data is granular down to county-level information on things like pill shipments from manufacturer to distributor, we can see which pharmacies were receiving the most pills. And, crucially, which manufacturers were flooding the markets. For this screenshot I looked at Philadelphia, though I only moved here in 2016, well after the date range for this data set.

It could be worse
It could be worse

You can clearly see, however, the designers chose simple bar charts to show the top-five. I don’t know if the exact numbers are helpful next to the bars. Visually, it becomes a quick mess of greys, blacks, and burgundies. A quieter approach may have allowed the bars to really shine while leaving the numbers, seemingly down to the tens, for tables. I also cannot figure out why, typographically, the pharmacies are listed in all capitals.

But the because I lived in Chicago for most of the crisis, here is the screenshot for Cook County. Of course, for those not from Chicago, it should be pointed out that Chicago is only a portion of Cook County, there are other small towns there. And some of Chicago is within DuPage County. But, still, this is pretty close.

Better numbers than Philly
Better numbers than Philly

In an unrelated note, the bar charts here do a nice job of showing the market concentration or market power of particular companies. Compare the dominance of Walgreens as a distributor in Cook County compared to McKesson in Philadelphia. Though that same chart also shows how corporate structures can obscure information. I was never far from a big Walgreens sign in Chicago, but I have never seen a McKesson Corporation logo flying outside a pharmacy here in Philadelphia.

Lastly, the neat thing about this tool is that the user can opt to download an image of the top-five chart. I am not sure how useful that bit is. But as a designer, I do like having that functionality available. This is for Pennsylvania as a whole.

For Pennsylvania, state-wide
For Pennsylvania, state-wide

Credit for the piece goes to Armand Emamdjomeh, Kevin Schaul, Jake Crump and Chris Alcantara.

Baby, It’ Hot Outside Pt 2

Yesterday we looked at Billy Penn’s graphics about the cooler stations and I mentioned a few ways the graphic could be improved. So last night I created a graphic where I explored the limited scope of the data, but also showing how low the temperatures were, relative to the air temperature outside, using weather data from the National Weather Service, admittedly from Philadelphia International Airport, not quite Centre City, which I would expect to be warmer due to the urban heat bubble effect.

I'd be curious to see data for North Philly
I’d be curious to see data for North Philly

I opted to exclude the Patco Line since the original dataset did not include it either. However a section of it does run through Centre City and could be relevant.

Credit for the piece goes to me, though the data is all from Billy Penn and the National Weather Service.

Baby, It’s Hot Outside

Those of you living on the East Coast, specifically the Mid-Atlantic, know that presently the weather is quite warm outside. As in levels of dangerous heat and humidity. Personally, your author has not left his flat in a few days now because it is so bad.

Alas, not everyone has access to air conditioning in his or her abode. Consequently, they need to look to public spaces with air conditioning. Usually that means libraries or public buildings. But here in Philadelphia, have people considered the subway?

Billy Penn investigated the temperatures in Philadelphia’s subsurface stations along the Broad Street and Market–Frankford Lines—Philadelphia’s third and oft-forgot line, the Patco, was untested. What they found is that temperatures in the stations were significantly below the temperatures above ground. The Market–Frankford stations, for example, were less than 100ºF.

Just explore the rails…
Just explore the rails…

Of course that misses the 2nd Street station in Old City, but otherwise picks up all the Market–Frankford stations situated underground.

Then there is the Broad Street Line.

More rail riding…
More rail riding…

Here, I do have a question about why the line wasn’t investigated from north to south. It ran only as far north as Girard, stopping well short of north Philadelphia neighbourhoods, and then as far south as Snyder, missing both Oregon and Pattison (sorry, corporately branded AT&T) stations. The robustness of the dataset is a bit worrying.

The colours here too mean nothing. Instead blue is used for the blue-coloured Market–Frankford line and orange for the orange-coloured Broad Street line. (The Patco line would have been red.) Here was a missed opportunity to encode temperature data along the route.

Finally, if the sidewalk temperatures were measured at each station, I would want to see that data alongside and perhaps run some comparisons.

This is an interesting story, but some more exploration and visualisation of the data could have taken it to the next level.

Credit for the piece goes to Danya Henninger.

New Orleans Dodges a Bullet

Hurricane/tropical storm Barry has been dumping rain along the Gulf Coast for a few days now. But prior to this weekend, the biggest concern had been for the city of New Orleans, which sits besides the swollen Mississippi River. The river was running already high at 17 feet above normal, and with storm surges and tropical rain levels forecast, planners were concerned not with the integrity of the city’s levee system, rebuilt in the aftermath of Hurricane Katrina, but simply whether they would be tall enough.

So far, they have been.

The Washington Post tracked Barry’s course with the usual graphics showing forecast rainfall amounts and projected tracks. However, the real stunner for me was this cross section illustration of New Orleans that shows just how much of the central city sits below sea level. The cross section sits above a map of the city that shows elevation above/below sea level as well as key flood prevention infrastructure, i.e. levees and pumping stations.

A lot floodable space
A lot floodable space

The unmentioned elephant remains however. The National Oceanic and Atmosphere Administration’s extreme climate change impact forecast says the water around New Orleans might rise by nearly 13 feet by 2100. Clearly, that is still well below the 20 feet levees of today. But what if there were to be a 17 feet high Mississippi River atop the additional 13 feet? 30 feet would flood the city.

Credit for the piece goes to John Muyskens, Armand Emamdjomeh, Aaron Steckelberg, Lauren Tierney, and Laris Karklis.

British English vs. Irish English

The United Kingdom is known for having a large number of accents in a—compared to the United States—relatively small space. But then you add in Ireland and you have an entirely new level of linguistic diversity. Josh Katz, who several years ago made waves for his work on the differences in the States, completed some work for the New York Times on those differences between the UK and Ireland.

You might know this as tag. At least I do.
You might know this as tag. At least I do.

Why do I bring it up? Well, your author is going on holiday again, this time back to London. I will be maybe taking some day trips to places outside the capital and maybe I will confirm some of these findings. But if you want, you can take the quiz and see where you fall compared to Katz’s findings.

And it does pretty well. It identified me as being clearly not from the British Isles.

Maybe I'm secretly Cornish?
Maybe I’m secretly Cornish?

But depending upon how you answer a particular question, the article will show you how your answer compares.  Let’s take my answer for scone. In that, I am more Irish.

Or you can just call them fantastic and delicious.
Or you can just call them fantastic and delicious.

Credit for the piece goes to Josh Katz.

The Ebola Outbreak in the Congo

Ebola, which killed 11,000 people in West Africa in 2014 (which I covered in a couple of different posts), is back and this time ravaging the Congo region, specifically the Democratic Republic of the Congo (DRC). The BBC published an article looking at the outbreak, which at 1,400 deaths is still far short of the West Africa outbreak, but is still very significant.

That's looking like a tenuous border right now…
That’s looking like a tenuous border right now…

The piece uses a small multiples of choropleths for western Congo. The map is effective, using white as the background for the no case districts. However, I wonder, would be more telling if it were cases per month? That would allow the user to see to where the outbreak is spreading as well as getting a sense of if the outbreak is accelerating or decelerating.

The rest of the article features four other graphics. One is a line chart that also looks at cumulative cases and deaths. And again, that makes it more difficult to see if the outbreak is slowing or speeding up. Another is how the virus works and then two are about dealing with the virus in terms of suits and the containment camps. But those are graphics the BBC has previously produced, one of which is in the above links.

Credit for the piece goes to the BBC graphics department.

Regional Power Plays

One of the things we missed covering last week whilst I was on holiday? The dust up in the Gulf of Oman, located near the Strait of Hormuz, where two foreign ships were attacked by mines or other explosive devices. The United States blames Iran and, of course, Iran denies it. The thing is, an inordinate amount of oil flows through the Strait, connecting the petroleum-driven economies of the West to the instability in the Middle East. Thankfully we have a graphic from the Guardian to explain just what is going on there.

Not shown: the US, the EU, China, and Russia
Not shown: the US, the EU, China, and Russia

The above is a screenshot from the article, one of several graphics. There is a stacked bar chart showing the total volume of oil in transit, and the Strait’s share of it. Spoiler: it’s significant. We all know how I feel about stacked bars: not the biggest fan.

There are, of course, locator maps showing the locations of the attacked ships. We also have some photographs showing the damage inflicted upon the tankers, as well as some evidence of what the US claims is Iranian activities. (Side note: isn’t it great that when the US really wants the world to trust its intelligence agencies the White House has been doing nothing but trashing said intelligence agencies?)

The above, however, is a simple map showing the political fault line in the Middle East. It gets to the heart of the potential conflict here being not a US vs. Iran war, but a Saudi Arabia vs. Iran war. After all, relations between the Saudis and the Trumps have warmed significantly since the Obama administration. And not shown in the map is the role of Israel, which, again has seen a significant warming in relations between Trump and Netanyahu, and which has also been quietly supporting Saudi Arabia in its undeclared war against Iran, to date fought only with proxies, most notably in Yemen.

In other words, the Middle East is a complicated and complex tinder box, built next to a few nuclear reactors, all of which just happen to sit atop vast reserves of oil and natural gas. So the best thing to do? Clearly start exploding things.

Credit for the piece goes to the Guardian graphics department.

Tornado Alley Spread East

Last week the Philadelphia area experienced a mini tornado outbreak with three straight days of watches and warnings. Of course further west in the traditional Tornado Alley, far more storms of far greater intensity were wreaking havoc. But with tornado warnings going off every few minutes just outside the city of Philadelphia, it was hard to concentrate on storms in, say, Oklahoma.

But the New York Times did. And they put together a nice graphic showing the timeline of the outbreak using small multiples to show where the tornado reports were located on 12 consecutive days.

Who remembers the film Twister?
Who remembers the film Twister?

Of course the day of that publication, 29 May, would see another few dozen, even in and around Philadelphia. Consequently, the graphic could have been extended to a day 13. But that would have been rather unlucky.

From a design standpoint, the really nice element of this graphic is that it works so well in black and white. The graphic serves as a reminder that good graphics need not be super colourful and flashy to have impact.

Credit for the piece goes to Weiyi Cai and Jason Kao.

The Rise of the Tropic(al Plant)s

Last week I had three different discussions with people about some of the impact of climate change upon the United States. However, what did not really come up in those conversations was the environmental changes set to befall the United States. And by environment, I explicitly mean how the flora of the US will change.

Why? Well, as warmer climates spread north, that means tropical and subtropical plants can follow warmer temperatures northward into lands previously too cold. And they could replace the species native to those lands, who evolved adaptations for their particular climate.

Thankfully, last week the New York Times published a piece that explored how those impacts could be felt. Hardiness zones are a concept designed to tell gardeners when and where to plant certain crops. And while the US Department of Agriculture has a detailed version useful to horticulturists, the National Oceanic and Atmospheric Administration produces a very similar version for the purpose of climate studies. And when you group those hardiness levels by the forecast lowest temperatures in an area, you get this.

More palm trees?
More palm trees?

There you have it, the forecast change to plant zones.

From a design standpoint, I like the idea of the colour shift here. However, where it breaks seems odd. Though it could be more influenced by the underlying classifications than I understand. The split occurs at 0ºF, which is well below freezing. I wonder if the freezing point, 32ºF could have been used instead. I also wonder if adding Celsius units above the same legend could be done to make the piece more accessible to a broader audience.

Otherwise, it’s a nice use of small multiples. And from the editorial design standpoint, I like how the article’s text above the graphic makes use of a six-column layout to add some dynamic contrast to what is essentially a three-column layout for the graphics.

They're living on a grid
They’re living on a grid

Credit for the piece goes to Nadja Popovich.

Living in the Dark

Earlier this month the Economist published an article that looked at a different way of measuring the economic output of North Korea. The state is so secretive that the publicly available data we all rely on for almost every country is not available. Nor would we necessarily believe their figures. So we have to rely on other measures to estimate the North Korean economy.

The article is about how luminosity, i.e. the lights on seen from space at night, can be used as a proxy for economic activity in the reclusive state.

No lights to guide me home
No lights to guide me home

The article is a fascinating read and uses a scatter plot to show the correlation between luminosity and GDP per capita then how that translates to North Korea, comparing it to older models.

Credit for the piece goes to the Economist graphics department.