Super Spreading Garden Parties

If you were unaware, in the wee hours of Friday, President Trump announced that he had tested positive for the coronavirus that causes Covid-19. It should be stated in the just three days hence, there is an enormous amount of confusion about the timeline as the White House is not commenting. From the prepared statement initially released it seems Trump first tested positive Wednesday. But that statement was then changed to fit the diagnosis in the wee hours of Friday morning. But just last night I saw reporting saying that test was actually a second, confirmatory test and the president first tested positive earlier Thursday.

The timeline is also important because it would allow us to more definitively determine when the president was infected. The reporting indicates that he caught the virus at a Rose Garden ceremony at the White House to introduce his Supreme Court nominee, Amy Coney Barrett. This BBC graphic does a great job showing who from that ceremony has tested positive with the virus.

The photo also does a great job showing how the seven people there were situated. Six of the seven did not wear masks, only North Carolina Senator Thom Tillis did. There is no social distancing whatsoever. And not shown in this photo are the indoor pre- and post-ceremony festivities where people are in close quarters, mingling, talking, hugging, shaking hands, all also without masks.

It should be noted others not in the photograph, e.g. campaign manager Bill Stepien, communications advisor Hope Hicks, and body man Nicholas Luna, have also now been confirmed positive.

The final point is that this goes to show how much the administration does not take the pandemic seriously. Right now the Covid data for some states indicates that the virus is beginning to spread once again. And so maybe this serves as a good reminder to the general public.

Just because you are socialising outdoors does not make you safe. Outdoors is better than indoors. No gatherings is better than small gatherings is better than large, well attended garden parties. Masks are better than no masks. Rapid result test screening is better than no test screening. Temperature checks are better than no temperature checks.

But the White House only did that last one, temperature checks, in order to protect the president before admitting people to the Rose Garden. Compare that to how they protect the president from other physical threats. He has Secret Service agents standing near him (or riding with him in hermetically sealed SUVs for joyrides whilst he is infected and contagious); he has checkpoints and armed fences further out to secure the perimeter. Scouts and snipers are on the White House roof for longer range threats. And there is a command centre coordinating this with I presume CCTV and aerial surveillance to monitor things even further out. In short, a multi-layered defence keeps the president safe.

If you just take temperatures; if you just hang out outside; if you just wear masks; if you just do one of those things without doing the others I mentioned above, you are putting yourself—and through both pre-diagnostic/pre-symptomatic and asymptomatic spreading, others—at risk.

But on Sunday night, Trump campaign strategist went on television said that now that President Trump has been infected, been hospitalised, he is ready to lead the fight on coronavirus. Great. We need leadership.

But where was that leadership seven months ago when your advisors told you in January about the impact this pandemic would likely have on the United States? Where was the leadership in February saying the coverage was a hoax? Where was it in March when he said the virus would go away in April with the warmer weather? Where was it in April when it didn’t go away, when things continued to get worse? Where was it in May when thousands of Americans were dying? Where was it in June when states began to reopen even though the virus was still out-of-control and testing and contact tracing was less available than necessary to contain outbreaks? Where was it in July? And August? And September? Where was the leadership at a Rose Garden party celebrating the nomination of a Supreme Court justice, a party where at least seven people have been infected and one of them, the president of the United States, has been hospitalised with moderate to severe symptoms?

Credit for the piece goes to the BBC.

The UK’s Most Popular Baby Names

Today’s piece comes from a BBC piece that visualises the most popular baby names in the UK along with the largest winners and losers in name popularity. The article leads with the doubling of babies with the name Dua, from a singer named Dua Lipa, and more than doubling those with the name Kylo, from a character in Star Wars. Of course, those are not the most popular names in the United Kingdom. For boys it’s presently Oliver and for girls, Olivia.

Naturally the piece has a bar chart for each sex and their ten most popular names. But later on in the piece we see two set of graphics that look at those names with the fastest rises or declines in popularity. I chose to screenshot the winners.

It makes use of essentially sparklines, a concept that features small line charts that really focus on direction instead of levels. Note the lack of axis labelling to inform the reader the line’s minimum and maximum. Instead the minimum and maximum are the absolute vertical range of the line.

What this chart attempts to do, however, is hint at those ranges through colour. By using a thicker weight, the line encodes the number of names in the colour. Compare Arthur, whose line ends in a dark bluish colour, to that of Arlo or Grayson, whose names also end in their peak, but in a light bluish colour. All three names have risen, but in terms of absolute levels, we see far more Arthurs than Graysons. Holy popularity, Batman.

When it comes to communicating the size of the names’ popularity, I am not entirely convinced about the idea’s efficacy. But, it lands more often than not. Can I compare Ada to Hallie? No, not really. But Ada vs. Theo is fairly clear.

Could the same effect be accomplished by a sorting order? Say the names were grouped by those who have numbers in 2019 that fall between 3,000 and 4,000, then another range of 1,000–2,000, and so on.

I also wonder if the colours in the bar charts could have been linked to those of the rising and falling names? Keep dark green for the boys’ names and purple for the girls’. It could have made a more solid thematic link between the graphics. As it is now, there seems no rhyme nor reason for the colour choices.

Finally the article has two tables that list the most popular names for each sex for each region. There’s nothing really to improve in the table’s design. The rules dividing rows and columns are fairly light so we don’t have to highlight that usual fault.

Overall, it’s a strong article with some nice visualisations.

Credit for the piece goes to the BBC graphics department.

The Vaxx Path

Today we look at a wee graphic from the BBC examining the current state of Covid-19 vaccines. None have been approved, but 163 are on the path to approval.

The vaxx path

This falls into the category of not everything has to be super complex. Each vaccine is shown as a discrete unit, a small square. For me in this instance this works better than a bar chart showing the total number per each phase. It highlights how each vaccine is a distinct unit and that it can move from one section down to the next. (Although I suppose if it fails a phase it can also be removed entirely.)

And if you want another reason why a nationalist, isolationist foreign policy that bashes foreign countries is not great…none of the Phase 3 candidates, closest to approval, are from an American company or institution.

Credit for the piece goes to the BBC graphics department.

Axis Lines in Charts

The British election campaign is wrapping up as it heads towards the general election on Thursday. I haven’t covered it much here, but this piece from the BBC has been at the back of my mind. And not so much for the content, but strictly the design.

In terms of content, the article stems from a question asked in a debate about income levels and where they fall relative to the rest of the population. A man rejected a Labour party proposal for an increase in taxes on those earning more than £80,000 per annum, saying that as someone who earned more than that amount he was “not even in the top 5%, not even the top 50”.

The BBC looked at the data and found that actually the man was certainly within the top 50% and likely in the top 5%, as they earn more than £75,300 per annum. Here in the States, many Americans cannot place their incomes within the actual spreads of income. The income gap here is severe and growing.  But, I want to look at the charts the BBC made to illustrate its points.

The most important is this line chart, which shows the income level and how it fits among the percentages of the population.

Are things lining up? It's tough to say.
Are things lining up? It’s tough to say.

I am often in favour of minimal axis lines and labelling. Too many labels and explicit data points begin to subtract from the visual representation or comparison of the data. If you need to be able to reference a specific data point for a specific point on the curve, you need a table, not a chart.

However, there is utility in having some guideposts as to what income levels fit into what ranges. And so I am left to wonder, why not add some axis lines. Here I took the original graphic file and drew some grey lines.

Better…
Better…

Of course, I prefer the dotted or dashed line approach. The difference in line style provides some additional contrast to the plotted series. And in this case, where the series is a thin but coloured line, the interruptions in the solidity of the axis lines makes it easier to distinguish them from the data.

Better still.
Better still.

But the article also has another chart, a bar chart, that looks at average weekly incomes across different regions of the United Kingdom. (Not surprisingly, London has the highest average.) Like the line chart, this bar chart does not use any axis labels. But what makes this one even more difficult is that the solid black line that we can use in the line charts above to plot out the maximum for 180,000 is not there. Instead we simply have a string of numbers at the bottom for which we need to guess where they fall.

Here we don't even a solid line to take us out to 700.
Here we don’t even a solid line to take us out to 700.

If we assume that the 700 value is at the centre of the text, we can draw some dotted grey lines atop the existing graphic. And now quite clearly we can get a better sense of which regions fall in which ranges of income.

We could have also tried the solid line approach.
We could have also tried the solid line approach.

But we still have this mess of black digits at the bottom of the graphic. And after 50, the numbers begin to run into each other. It is implied that we are looking at increments of 50, but a little more spacing would have helped. Or, we could simply keep the values at the hundreds and, if necessary, not label the lines at the 50s. Like so.

Much easier to read
Much easier to read

The last bit I would redo in the bar chart is the order of the regions. Unless there is some particular reason for ordering these regions as they are—you could partly argue they are from north to south, but then Scotland would be at the top of the list—they appear an arbitrary lot. I would have sorted them maybe from greatest to least or vice versa. But that bit was outside my ability to do this morning.

So in short, while you don’t want to overcrowd a chart with axis lines and labelling, you still need a few to make it easier for the user to make those visual comparisons.

Credit for the original pieces goes to the BBC graphics department.

Merging of the States

Dorian now speeds away from Newfoundland and into the North Atlantic. We looked at its historic intensity last week. But during that week, with all the talk of maps and Alabama, I noted to myself a map from the BBC that showed the forecast path.

Did New Jersey eat Delaware?
Did New Jersey eat Delaware?

But note the state borders. New Jersey and Delaware have merged. Is it Delawarsey? And what about Maryland, Virginia, and the District of Columbia? Compare that to this map from the Guardian.

Here the states are intact
Here the states are intact

What we have are intact states. But, and it might be difficult to see at this scale, the problem may be that it appears the BBC map is using sea borders. I wonder if the Delaware Bay, which isn’t a land border, is a reason for the lack of a boundary between the two states. Similarly, is the Potomac River and its estuary the reason for a lack of a border between Virginia, Maryland, and DC?

I appreciate that land shape boundary files are easy, but they sometimes can mislead users as to actual land borders.

Credit for these pieces go the BBC graphics department and the Guardian graphics department.

Greenland Is Melting

There is a lot going on in the world—here’s looking at you Brexit vote today—but I did not want to miss this frightening article from the BBC on the melting of Greenland’s ice. It’s happening. And it’s happening faster than thought.

There are several insightful graphics, including the standard photo slider of before and after, a line chart showing the forecast rise of sea levels within the possible range. But this one caught my eye.

Alarming rates along the coast.
Alarming rates along the coast.

The colour palette here works fairly well. The darkest reds are not matched by a dark blue, but that is because the ice gain does not match the ice loss. Usually we might see a dark blue just to pair with a dark red, but again, we don’t because the designers recognised that, as another chart shows, the ice loss is outweighing the gains, though there are some to be found most notably at the centre of the ice sheets. This is a small detail, but something that struck me as impressive.

My only nitpick is that the legend does not quantify the amounts of gain or loss. That could show the extremes and reinforce the point that the loss is dwarfing the gain.

Credit for the piece goes to the BBC graphics department.

How Warm Will It Get?

In Philadelphia, this summer has been warmer than average. But with most recent years being warmer than average, that might not mean much. However, a valid question is that with climate change, how much warmer will the city get on average? The BBC recently published an article that explored the temperature changes in cities around the world according to several different models for best to worst case scenarios.

The raw data so to speak
The raw data so to speak

It does a nice job via scrolling of showing how the averages work as a rolling average and the increase over time. It runs through each scenario, from best case to worst case, as a dotted line and then plots each in comparison to each other to show the range of possible outcomes.

Ew. Just ew.
Ew. Just ew.

I know that dark or black background is in style for big pieces. But I still do not love them. Thankfully the choice of these two colours work here. The dotted lines also work for showing the projections. And in the intermediate steps, not screencaptured, the previous projections go dark and only the current one is highlighted.

Thankfully the text boxes to the right capture the critical numbers: the actual projection numbers for the monthly average. And they tie them to the lines via the colours used.

Not shown here are a few other elements of the piece. The top of the article starts with a spinning globe that shows how the average temperature across the globe has already changed. Spoiler: not well. While the spinning globe adds some interactivity to the article, it by definition cannot display the entire world all at once, like flat, two-dimensional projections do. This makes it difficult to see impacts across the globe simultaneously. A more standard projection map could have worked really well.

Lastly, the article closes with a few stories about specific locations and how these temperature increases will impact them. These use more illustrations and text. The exception, however, is a graphic of the Arctic that shows how summer sea ice coverage has collapsed over the last few decades.

Overall this is a strong piece that shows some global impacts while allowing the user to dive down into the more granular data and see the impact on some of the world’s largest cities.

Credit for the piece goes to BBC Visual and Data Journalism team.

The Ebola Outbreak in the Congo

Ebola, which killed 11,000 people in West Africa in 2014 (which I covered in a couple of different posts), is back and this time ravaging the Congo region, specifically the Democratic Republic of the Congo (DRC). The BBC published an article looking at the outbreak, which at 1,400 deaths is still far short of the West Africa outbreak, but is still very significant.

That's looking like a tenuous border right now…
That’s looking like a tenuous border right now…

The piece uses a small multiples of choropleths for western Congo. The map is effective, using white as the background for the no case districts. However, I wonder, would be more telling if it were cases per month? That would allow the user to see to where the outbreak is spreading as well as getting a sense of if the outbreak is accelerating or decelerating.

The rest of the article features four other graphics. One is a line chart that also looks at cumulative cases and deaths. And again, that makes it more difficult to see if the outbreak is slowing or speeding up. Another is how the virus works and then two are about dealing with the virus in terms of suits and the containment camps. But those are graphics the BBC has previously produced, one of which is in the above links.

Credit for the piece goes to the BBC graphics department.

The Tory Leadership Process

Today is another day in the Tory leadership election that will eventually see approximately 120,000 members of the Conservative Party electing the next prime minister of the 66,000,000 people living in the United Kingdom. The remaining candidates need at least 33 votes from MPs to move on. Those and/or the last place candidate will be eliminated. The question today is whether Dominic Raab, Sajid Javid, and Rory Stewart can move to the next round along with the front runner Boris Johnson and his two not-really-close-but-someone-has-to-be-a-significant competitors, Jeremy Hunt and Michael Gove.

But what happens after today’s vote? The BBC created a graphic explaining it all.

Oh yeah, and Brexit is still happening.
Oh yeah, and Brexit is still happening.

It’s a simple concept: a calendar that uses shades and outline boxes to highlight particular dates.

But the elephant in this particular Westminster cloakroom is that the Tories are using all this time whilst the Brexit clock keeps ticking down to 31 October.

Credit for the piece goes to the BBC graphics department.

The Climate Impact of Your Food

Climate change is a thing. And facing it will require a lot of our societies. But the longer we choose not to act, the more the impact will be felt by later generations. Consequently, across the world, young students have been walking out of class to shine light on an issue on which they, as children, have little direct impact. Yet. But what about us? The ones who can vote and make lifestyle decisions?

The BBC had a piece where, after soliciting questions from their readership, they answered questions. One question being, what can individuals do to reduce their impact. And while clearly individuals need to do more than one thing, one facet can be examining one’s diet. The article included this graphic on the climate impact of various food types, vis-a-vis greenhouse gas emissions.

Is this saying I should drink more beer?
Is this saying I should drink more beer?

Essentially we are looking at a simplified box plot of greenhouse gas emissions per serving of food (and drink) type. The box plot looks at a range of values for a specific item. It usually shows the extremes at both ends; the range of a significant number of the data points, e.g. 80% of the set, or by decile, or by quartile; and then lastly the average, be it mean or median. Here we have only low impact, high impact, and average impact. Presumably the minimum, maximum, and then either mean or median.

And it works really well. Chocolate is a great example of how on average, chocolate isn’t terrible. But certain chocolates can have far worse ramifications than low-impact beef, or average-impact lamb and prawns. And beef is well known to be one of the most impactful types of food.

From a design standpoint, I don’t know if the colours necessarily help. The average beef impact, for example, is worse than the high-impact maximum of every other food listed. But the association of green=good and red=bad  here has little value because by that logic, the average=gold beef should be red as it sits above the high-impact everything else. A less editorial choice could be made of say a light grey or blue and then have the bright colour, maybe still orange, indicate where the average sits on that spectrum.

I do like the annotations on the chart. It highlights particular stories, like the aforementioned chocolate one, that the casual, i.e. skimming, reader may miss.

I could probably do without the little food illustrations. But the designer did a good job of making them all recognisable in such a small space—far from an easy task. And being so small, they don’t really distract or take away from the whole graphic.

Overall, this is a strong graphic.

Credit for the piece goes to the BBC graphics department.