Black Holes and Revelations: Remastered

Two years ago I posted about how the Event Horizon Telescope Collaboration managed to take the first photograph of a black hole, in particular a supermassive black hole at the centre of the M87 galaxy, one of those galaxies far, far away that we see at a long time ago.

This morning, the same group of scientists released the first photograph of Sagittarius A*, the supermassive black hole at the centre of our very own Milky Way Galaxy. The BBC article I read this morning included the photo of the black hole, which you should definitely check out because of its importance in the history of astronomy. But, for our purposes here on Coffeespoons, I wanted to look at the diagram the designers at the BBC made to explain the photograph.

So cool.

The designer used some simple white lines with a thicker stroke for the axis and defining features and a thinner line to point to elements of the photo. In particular I like the dotted line for the black hole, because there is no real way to photograph the hole itself since it consumes all the light we would need to image it. Instead, we photograph the “black hole” at the centre of the accretion disk, all the super heated gas and matter slowly swirling around and collapsing into the singularity. We also get two axes to show the size of the ring and that of the black hole itself. The ring measures a diameter of about 63 million kilometres. The distance from the Sun to Mercury, the closest planet to our Sun, is 58 million kilometres.

Supermassive indeed.

Well done, science. Well done.

Credit for the piece goes to the graphics team at the BBC.

The Continents Will Fall Off the Flat Earth

To be clear, we know the Earth is round. At least most people know that. Some people delude themselves. We also know that sitting atop the mantle we have plates of rock that move around. Sometimes they slip underneath others. Other times they collide and crumple. Plate tectonics explain why there are so many similarities between continents separated by an ocean.

But while that explains historical connections, what does it say about the future? The fact is that we don’t know for certain. Luckily a recent BBC article explored four different scenarios. And they included graphics, here’s a screenshot of one of them.

They called this scenario Aurica

The graphics are pretty simple with green continents and blue oceans. But they work really well for showing the scenarios. The maps also include black lines for subduction zones, i.e. lines along which the plates that define the ocean floor, and the white lines represent mid-ocean ridges. Those are where the ocean plates diverge and in the process create new ocean floor. The designers also included some labels to help the audience understand just what green shape came from today’s continents.

Credit for the piece goes to the BBC graphics department.

Let There Be Light

In several decades…

Just a quick little piece today, a neat illustration from the BBC that shows how the process of nuclear fusion works. The graphic supports an article detailing a significant breakthrough in the development of nuclear fusion. Long story short, a smaller sort-of prototype successfully proved the design underpinning a much larger fusion reactor currently under construction in France. We are potentially on our way to proving the viability of nuclear fusion as an energy source.

Why is that important? Well, first of all, no carbon emissions. Nuclear fusion powers the Sun, where hydrogen is fused with hydrogen to produce helium and in the process release an enormous amount of energy. Mankind wants to take that energy and use it to heat water to generate steam to spin turbines to create electricity.

And we use a lot of electricity.

So how does fusion work?

The BBC graphic shows how. This is a bit simplified, even for my tastes, but it’s generally pretty good. For example, I probably would have labelled protons and neutrons earlier (to the left) of the graphic. And my big question mark is about the widths of the arrows, because if the width of the arrows relates to the scale of the energy, as that is the crux of the matter. (See what I did there?)

Basically when we want to generate energy we want to add as little as possible to start a reaction to net as much output as possible. A little bit of energy is used to split a uranium isotope and that generates a tremendous amount of energy. Thus far with nuclear fusion, however, we use a lot of energy to fuse hydrogen into helium and get little back as output. In other words, a net loss.

The graphic omits how this reactor in the UK works, by using a doughnut-shaped vessel to contain the hydrogen reaction. To do this they use superconducting magnets to generate powerful electromagnetic fields. This contains the hydrogen that turns into a superheated plasma. After all, it’s not like there are any materials known to man that can safely contain the temperatures of the Sun. But we have evidence that as the amount of plasma scale up, the closer we get to breaking even. And that’s the goal for the French reactor.

The other big question in the room is how this helps us with climate change, because as I stated up top, no carbon emissions. Unfortunately, not much. The French reactor is still several years away from being complete. And if that works as expected, commercial-scale reactors powering electricity generation stations are many more years away. Fusion will help power us into the 22nd century. And so we will still need nuclear fission and renewables to get us through the 21st.

Credit for the piece goes to the BBC graphics department.

Even Older Family Trees

Yesterday we looked at a graphic about an old family tree, revealed by ancient DNA. But at the end of the day it is a family tree of descent for a human male. But mankind itself fits within a kind of family tree, the circle family tree of life.

The tree of life continues to evolve as we discover new species and then reconfigure what we have to fit what we now know. When I was a wee lad in school, we learned about the three kingdoms of life: plants, animals, and fungi. Bacteria were a separate branch.

A few weeks ago, however, I was reading an article about how a recent DNA analysis identified a new “supergroup” within our larger group of complex cellular life, eukaryotes (plants, animal, and fungi fall within this). Luckily for our purposes the article contains a small graphic at which we can take a look.

Humans are way, way, way down on the tree.

The diagram uses a fairly simple design. Two panels split the largest groupings into its branches whilst the second panel breaks up eukaryotes. Colour links the eukaryotes together and shows how they fit into the broader tree to the left, which uses dark grey and light blue for bacteria and archaea, respectively.

A nice additional touch was the designer’s decision to include a small icon that represents the name of the supergroups within eukaryotes. Because, as the text points out, we don’t have commonly known names for these supergroups. Did I know that we belong to the opisthokonts? Absolutely not. Although dog people may be upset that the cat got the call to represent animals.

Regardless of the design, you can still see in the second panel how people are more closely related to amoeba than we are plants. But this new supergroup, hemimastigotes, branches off from the rest of us eukaryotes at a very early point. And the DNA proves it.

Overall this was a really nice graphic to see in a fascinating article. Science is cool.

Credit for the piece goes to Lucy Reading-Ikkanda.

Space: The Final Frontier

We’re back after a nice holiday break. And one of the most fascinating things to happen was the successful—and seemingly easy, more on that in a bit—launch of the James Webb space telescope. The James Webb was developed by NASA with contributions from both the European Space Agency (ESA) and the Canadian Space Agency (CSA). Whilst it did launch behind schedule and at a price tag of $10 billion, the James Webb is the most sophisticated and complex space telescope mankind has yet launched into space. It will look backwards into time to some of the earliest stars and galaxies in the universe. It will also look at the thousands of exoplanets we have discovered in the last three decades. The instruments aboard James Webb will be able to help us identify if any of these planets have water and other ingredients necessary for life as we know it. This could be one of the most monumental space missions yet.

But James Webb’s launch was far from guaranteed. As this great article from the BBC explains, the construction, assembly, launch, and deployment were all incredibly complicated. James Webb is expected to operate for ten years before its fuel, needed to keep the telescope cold, runs out. However, the seemingly easy launch and deployment means that it used less fuel than expected. Some early reports suggest that the telescope may have some additional time left in it now before the fuel runs dry.

I encourage you to read the article, because it explains the advantages of the telescope, how it works, and its deployment with several illustrations. There are five in particular, though I’ll share only two screenshots.

The most important is this, the key distinction between Hubble and James Webb. It shows how the two space telescopes will be operating in different parts of the electromagnetic spectrum.

All the light…

The graphic fakes the colours, because by definition we can only see the visible portions of the spectrum. Wavelengths get either too short or too long on either side of the visible spectrum—which differs for different species. I would actually really enjoy seeing how these two spectra stack up against other space observatories like Chandra (x-ray) and Spitzer (infrared).

Next we have the deployment, which finished just last week. The graphic summarises how complicated this process was—and how fraught with risk. But in the end it went off without any major hitch.

Make sure to read the instructions before deployment…

This uses a nice series of small multiples of illustrations. These simplified drawings show how the tightly packed telescope unfolds and then begins deploying its vital heat shield then its mirror.

The last thing to check out in the article is a slider showing the “before” and “after”. You have seen them before for things like flood or hurricane damages. Here, however, you can compare a photo in Hubble’s visible light to an existing infrared version of the same photo.

Of course, just because the telescope finished deploying its mirror last week doesn’t mean we get photos this week. The Baltimore-based team running the observatory will spend the next few months tuning everything up. But the goal is hopefully to have the first images from James Webb sometime in June.

And then we have the next ten years to hopefully start collecting data.

Credit for the piece goes to the BBC graphics team.

Mt Greylock Cross Section

I spent the better part of the last two weeks travelling and hanging out in the Berkshires and Connecticut River Valley in western Massachusetts. One of the coolest experiences was driving up the automobile route for Mt Greylock, the tallest point in Massachusetts.

Most of the drive itself was just regularly spectacular as the mid-morning sunlight hit the trees above the road, creating a warm yellow-orange light that bathed the route. But maybe about halfway or two-thirds of the way up, I rounded a bend in the road and came upon a clearing—and convenient pullover. The scene elicited an audible swear and not surprisingly I stopped the car to enjoy the scenery and take some photos.

Whilst there, I also noticed a small sign that, among other things diagrammed the cross section of Mt Greylock and points to the east and west. And I figured that would be a good way to start the week.

Mt Greylock

The sign uses an old map to illustrate the different rock layers that define the mountain. Marble, which is a soft rock, erodes during glaciation whereas schist, a hard rock, does not. And during the recent ice ages, when glaciers covered the area, most of the marble areas of the mountain range were eroded away, leaving just the sharp stony peaks of schist.

Credit for the piece goes to the US Geological Survey designers, ca. 1894.

But Where Are the Spiders?

Yesterday I mentioned more about revolutions, well today we’re talking about Mars, a planet that revolves around the Sun. Late last week scientists working with the InSight lander on the Red Planet published their findings. Turns out we need to rethink what we know about Mars.

First, the planet is probably much older than Earth. Mars’ composition also differs from Earth in some significant ways. InSight mapped the interior of Mars by studying the seismic waves (think like sound waves but through the inside of planets) of marsquakes.

The Wall Street Journal published a great article spelling out the findings in detail that is well worth the read. It also included some nice graphics helping to support the piece. The one I wanted to highlight, however, was a brilliant comparison of Mars to Earth.

But how many licks to get to the centre?

Conceptually this is important, because many diagrams and graphics I’ve seen about these findings only detail the interior of Mars. But what makes Mars important is how it differs from Earth, and let’s be honest, how many of us remember our Earth science classes at school and can diagram out the interior of Earth?

And right here the designer compares the smaller—and now older—brother of Earth. Again, read the article for the details, but in short, some of the key findings are that the core is larger, but also lighter, than we thought. Our planet’s core differs because Earth has two parts: a solid and heavy ball of iron and nickel surrounded by a liquid core that spins. That spinning core creates the magnetic fields that protect our planet from the Sun and have kept our atmosphere intact. Mars doesn’t have that. And that’s in part because, given the core is larger than we thought, the mantle is smaller.

A smaller mantle means that certain materials couldn’t form that insulate the Earth’s core. So while Earth’s core has been prevented from cooling and slowing down, Mars was not. And so while it did have a magnetic field at one point, that slowing, cooling core slowly dissipated the magnetic field. That may be why the planet, once rich in water, now is a barren rock exposed to the Sun.

Again, this is a big deal in terms of planetary science. Consider that Earth and Mars are broadly made of the same materials that orbited the Sun billions of years ago. But Mars took those same ingredients and made itself into a very different planet. And now we know quite a good deal more about the Red Planet.

One last point to make about the graphic above. Again, many illustrations will increase the size of the crust to make it more visible. Here the designer chose to keep it more in proportion to the scale of the planets’ interiors. (Even though Mars’ crust is quite a bit thicker than Earth’s.) I think that’s important because it puts us into perspective. We can build monuments like the Pyramids that last thousands of years and dig bore holes miles deep and tunnel out connections through mountain ranges, but that also just scratches the surface of the crust. But that crust is the thinnest of shells over the mantle and cores of these planets.

That life began and took hold on Earth, on that thinnest of shells protected by a magnetic field because of a spinning molten core buried at the centre of the planet…something to think about sometimes.

Credit for the piece goes to Merrill Sherman.

But What About Pluto?

Damn you Neil deGrasse Tyson (but not really though)!

Because, you know, he advocated for de-planet-fying Pluto back in the oughts.

Which I mention because of this post from xkcd, which corrects common images of planets in the solar system accounting for their population.

Still, though, no Pluto?

Credit for the piece goes to Randall Munroe.

The Mars Rovers

Perseverance landed on Mars on 18 February, almost a month ago. The video and photography the rover has already sent back has been stunning. We all know she is the most capable rover yet landed on the Red Planet, but what we all want to know is how cute is Perseverance compared to her predecessors?

Thankfully for that we have xkcd.

Still a big fan of Spirit and Opportunity. Designed to last 3 months, it trekked on for over 14 years.

Credit for the piece goes to Randall Munroe.

No, Your Vaccine Is Now Fully Operational

Another week is over, and for the past few years I’ve often said we all made it to the end of the week. When in reality, for the last few months, thousands of people were not. We’ve started using Monday to sort of recap the state of the pandemic in a select region of the country. And then we moved straight into how the New York Times addressed the US reaching the grim milestone of 500,000 deaths.

So I want to end this week with a little story told over at xkcd that tries to explain these new mRNA vaccines. Who doesn’t love science, science fiction, and humour woven together into a narrative? True, this isn’t really data visualisation, but it dovetails nicely into the work we’ve been doing and reviewing of late. Plus, levity. We all need levity.

These are not the cells you’re looking for.

You’ll want to click through to read it all.

Credit for the piece goes to Randall Munroe.