Black Holes and Revelations: Remastered

Two years ago I posted about how the Event Horizon Telescope Collaboration managed to take the first photograph of a black hole, in particular a supermassive black hole at the centre of the M87 galaxy, one of those galaxies far, far away that we see at a long time ago.

This morning, the same group of scientists released the first photograph of Sagittarius A*, the supermassive black hole at the centre of our very own Milky Way Galaxy. The BBC article I read this morning included the photo of the black hole, which you should definitely check out because of its importance in the history of astronomy. But, for our purposes here on Coffeespoons, I wanted to look at the diagram the designers at the BBC made to explain the photograph.

So cool.

The designer used some simple white lines with a thicker stroke for the axis and defining features and a thinner line to point to elements of the photo. In particular I like the dotted line for the black hole, because there is no real way to photograph the hole itself since it consumes all the light we would need to image it. Instead, we photograph the “black hole” at the centre of the accretion disk, all the super heated gas and matter slowly swirling around and collapsing into the singularity. We also get two axes to show the size of the ring and that of the black hole itself. The ring measures a diameter of about 63 million kilometres. The distance from the Sun to Mercury, the closest planet to our Sun, is 58 million kilometres.

Supermassive indeed.

Well done, science. Well done.

Credit for the piece goes to the graphics team at the BBC.

Colours for Maps

Today we have an interesting little post, a choropleth map in a BBC article examining the changes occurring in the voting systems throughout the United States. Broadly speaking, we see two trends in the American political system when it comes to voting: make it easier because democracy; make it more restrictive because voter fraud/illegitimacy. The underlying issue, however, is that we have not seen any evidence of widespread or concerted efforts of voter fraud or problems with elections.

Think mail-in ballots are problematic? They’ve been used for decades without issues in many states. That doesn’t mean a new state could screw up the implementation of mail-in voting, but it’s a proven safe and valid system for elections.

Think that were issues of fraudulent voters? We had something like sixty cases brought before the courts and I believe in only one or two instances were the issues even remotely proven. The article cites some Associated Press (AP) reporting that identified only 500 cases of fraudulent votes. Out of over 14 million votes cast.

500 out of 14,000,000.

Anyway, the map in the article colours states by whether they have passed expansive or restrictive changes to voting. Naturally there are categories for no changes as well as when some expansive changes and some restrictive changes were both passed.

Normally I would expect to see a third colour for the overlap. Imagine we had red and blue, a blend of those colours like purple would often be a designer’s choice. Here, however, we have a hatched pattern with alternating stripes of orange and blue. You don’t see this done very often, and so I just wanted to highlight it.

I don’t know if this marks a new stylistic design direction by the BBC graphics department. Here I don’t necessarily love the pattern itself, the colours make it difficult to read the text—though the designers outlined said text, so points for that.

But I’ll be curious to see if I, well, see more of this in coming weeks and months.

Credit for the piece goes to the BBC graphics department.

Regal Birthplaces

Earlier this week marked the 70th anniversary of Queen Elizabeth’s accession to the throne of the United Kingdom and many Commonwealth realms. There are many graphics about the length of her reign and the numerous prime ministers and presidents she has met over the years. But I actually enjoyed this article from the BBC as it dovetails nicely with my interest in genealogy, which frequently looks at the same sort of materials.

In genealogy we often want to find photos, illustrations, or really any kind of documentation that ties an ancestor to a particular place at a particular time. What I never realised is that the birthplace of Her Majesty, the Queen, no longer exists.

It kind of makes sense, however, when you consider that as the daughter of the younger son she was never expected to take the throne. When her uncle abdicated, however, her father took the throne and then she became next in line and we all know the rest. But because of that lack of expectation her birthplace was just another London townhome. The article details how development changed the location, not the Blitz as is often thought.

You can see from the screenshot above how the article uses a slider device to compare the neighbourhood in London today vs. what it was in 1895, about 30 years before the Queen’s birth.

At this point we’re all familiar with sliders, but they do work really well when it comes to this kind of before-after comparison.

Credit for the piece goes to the BBC graphics department.

Let There Be Light

In several decades…

Just a quick little piece today, a neat illustration from the BBC that shows how the process of nuclear fusion works. The graphic supports an article detailing a significant breakthrough in the development of nuclear fusion. Long story short, a smaller sort-of prototype successfully proved the design underpinning a much larger fusion reactor currently under construction in France. We are potentially on our way to proving the viability of nuclear fusion as an energy source.

Why is that important? Well, first of all, no carbon emissions. Nuclear fusion powers the Sun, where hydrogen is fused with hydrogen to produce helium and in the process release an enormous amount of energy. Mankind wants to take that energy and use it to heat water to generate steam to spin turbines to create electricity.

And we use a lot of electricity.

So how does fusion work?

The BBC graphic shows how. This is a bit simplified, even for my tastes, but it’s generally pretty good. For example, I probably would have labelled protons and neutrons earlier (to the left) of the graphic. And my big question mark is about the widths of the arrows, because if the width of the arrows relates to the scale of the energy, as that is the crux of the matter. (See what I did there?)

Basically when we want to generate energy we want to add as little as possible to start a reaction to net as much output as possible. A little bit of energy is used to split a uranium isotope and that generates a tremendous amount of energy. Thus far with nuclear fusion, however, we use a lot of energy to fuse hydrogen into helium and get little back as output. In other words, a net loss.

The graphic omits how this reactor in the UK works, by using a doughnut-shaped vessel to contain the hydrogen reaction. To do this they use superconducting magnets to generate powerful electromagnetic fields. This contains the hydrogen that turns into a superheated plasma. After all, it’s not like there are any materials known to man that can safely contain the temperatures of the Sun. But we have evidence that as the amount of plasma scale up, the closer we get to breaking even. And that’s the goal for the French reactor.

The other big question in the room is how this helps us with climate change, because as I stated up top, no carbon emissions. Unfortunately, not much. The French reactor is still several years away from being complete. And if that works as expected, commercial-scale reactors powering electricity generation stations are many more years away. Fusion will help power us into the 22nd century. And so we will still need nuclear fission and renewables to get us through the 21st.

Credit for the piece goes to the BBC graphics department.

Space: The Final Frontier

We’re back after a nice holiday break. And one of the most fascinating things to happen was the successful—and seemingly easy, more on that in a bit—launch of the James Webb space telescope. The James Webb was developed by NASA with contributions from both the European Space Agency (ESA) and the Canadian Space Agency (CSA). Whilst it did launch behind schedule and at a price tag of $10 billion, the James Webb is the most sophisticated and complex space telescope mankind has yet launched into space. It will look backwards into time to some of the earliest stars and galaxies in the universe. It will also look at the thousands of exoplanets we have discovered in the last three decades. The instruments aboard James Webb will be able to help us identify if any of these planets have water and other ingredients necessary for life as we know it. This could be one of the most monumental space missions yet.

But James Webb’s launch was far from guaranteed. As this great article from the BBC explains, the construction, assembly, launch, and deployment were all incredibly complicated. James Webb is expected to operate for ten years before its fuel, needed to keep the telescope cold, runs out. However, the seemingly easy launch and deployment means that it used less fuel than expected. Some early reports suggest that the telescope may have some additional time left in it now before the fuel runs dry.

I encourage you to read the article, because it explains the advantages of the telescope, how it works, and its deployment with several illustrations. There are five in particular, though I’ll share only two screenshots.

The most important is this, the key distinction between Hubble and James Webb. It shows how the two space telescopes will be operating in different parts of the electromagnetic spectrum.

All the light…

The graphic fakes the colours, because by definition we can only see the visible portions of the spectrum. Wavelengths get either too short or too long on either side of the visible spectrum—which differs for different species. I would actually really enjoy seeing how these two spectra stack up against other space observatories like Chandra (x-ray) and Spitzer (infrared).

Next we have the deployment, which finished just last week. The graphic summarises how complicated this process was—and how fraught with risk. But in the end it went off without any major hitch.

Make sure to read the instructions before deployment…

This uses a nice series of small multiples of illustrations. These simplified drawings show how the tightly packed telescope unfolds and then begins deploying its vital heat shield then its mirror.

The last thing to check out in the article is a slider showing the “before” and “after”. You have seen them before for things like flood or hurricane damages. Here, however, you can compare a photo in Hubble’s visible light to an existing infrared version of the same photo.

Of course, just because the telescope finished deploying its mirror last week doesn’t mean we get photos this week. The Baltimore-based team running the observatory will spend the next few months tuning everything up. But the goal is hopefully to have the first images from James Webb sometime in June.

And then we have the next ten years to hopefully start collecting data.

Credit for the piece goes to the BBC graphics team.

Data Analysis and Baseball

First, a brief housekeeping thing for my regular readers. It is that time of year, as I alluded to last week, where I’ll be taking quite a bit of holiday. This week that includes yesterday and Friday, so no posts. After that, unless I have the entire week off—and I do on a few occasions—it’s looking like three days’ worth of posts, Monday through Wednesday. Then I’m enjoying a number of four day weekends.

But to start this week, we have Game 6 of the World Series tonight between the Atlanta Braves and the Houston Astros. That should the Braves vs. the Red Sox, but whatever. If you want your bats to fall asleep, you deserve to lose. Anyways, rest in peace, RemDawg.

Yesterday the BBC posted an article about baseball, which is first weird because baseball is far more an American sport that’s played in relatively few countries. Here’s looking at you Japanese gold medal for the sport earlier this year. Nevertheless I fully enjoyed having a baseball article on the BBC homepage. But beyond that, it also combined baseball with history and with data and its visualisation.

You might say they hit the sweet spot of the bat.

There really isn’t much in the way of graphics, because we’re talking about work from the 1910s. So I recommend reading the piece, it’s fascinating. Overall it describes how Hugh Fullerton, a sportswriter, determined that the 1919 White Sox had thrown the World Series.

Fullerton, long story short, loved baseball and he loved data. He went to games well before the era of Statcast and recorded everything from pitches to hits and locations of batted balls. He used this to create mathematical models that helped him forecast winners and losers. And he was often right.

For the purposes of our blog post, he explained in 1910 how his system of notations worked and what it allowed him to see in terms of how games were won and lost. Below we have this screen capture of the only relevant graphic for our purposes.

Grooves on the diamond

In it we see the areas where the batter is like safe or out depending upon where the ball is hit. Along the first and third base foul lines we thin strips of what all baseball fans fear: doubles or triples down the line. If you look closely you can see the dark lines become small blobs near home plate. We’ve all seen those little tappers off the end of the bat that die, effectively a bunt.

Then in the outfield we have the two power alleys in right- and left-centre. When your favourite power hitter hits a blast deep to the outfield for a home run, it’s usually in one of those two areas.

We also have some light grey lines, which are more where batted balls are going to get through the infielders. We are talking ground balls up the middle and between the middle infielders and the corners. Of course this was baseball in the early 20th century. And while, yes, shifting was a thing, it was nowhere near as prevalent. Consequently defenders were usually lined up in regular positions. These correspond to those defensive alignments.

Finally the vast majority of the infield is coloured another dark grey, representing how infielders can usually soak up any groundball and make the play.

The whole article is well worth the read, but I loved this graphic from 1910 that explains (unshifted) baseball in the 21st century.

Credit for the piece goes to Hugh Fullerton.

Germany’s Political Coalitions

Two weekends ago, Germany went to the polls for their federal election in which they chose their representatives in the Bundestag, or legislature. Germany, however, is not a two-party system and no single party won a majority of seats. Consequently, the parties need to negotiate and form a coalition government. That could take a number of different forms given the number of different parties and their number of seats.

Thankfully the BBC produced a small graphic in an article that detailed how Angela Merkel’s political heir likely won’t take charge of the new government.

Here in the States we can only dream of coalition governments…

It’s a simple graphic, but given the terms Traffic Light coalition, Jamaica coalition, and Kenya coalition I think it’s a necessary graphic to help explain the makeup of these potential coalition arrangements. This falls into the category of small but exceptionally clear graphics. More proof that not all useful graphics need to be flashy.

Credit for the piece goes to the BBC graphics department.

Flowing Lava and Layers

I didn’t have the internet yesterday morning, so apologies for no posting. But at least it was back by the afternoon. Unlike utilities in La Palma, where a volcano has been erupting and lava flowing, covering parts of the island.

The BBC had a brief article last week detailing the spread of the lava, which has been devastating the town. And it was a neat little graphic that I really liked.

At least it doesn’t move super quickly?

This graphic does a couple of things that I really like. First, context. Yes, the main graphic is the actual spread over four days (the fifth layer is almost half-a-day later). But in the upper-right corner, we have the same graphic layered over a satellite image of the region. I’m not sure how I feel about the satellite image, but overall it does provide a sense of scale.

Because the second thing I like is how the larger map shows not a satellite view, but rather a topographic or terrain view. The lines represent points of continuous height and help explain why the lava flow looks the way it does. The drawback here is that you don’t get any sense of urban development, like streets or neighbourhoods impacted. For that you could often use a satellite image, but then the colours and their saturation could detract from the importance of the graphical element, the lava flow layers.

Finally for the layers, I like the stepped gradients of the dark reds. This makes the sequential flow very clear. My only quibble might be the stroke or border on the shape. You can see that for all but the final shape, the stroke is a thin white line. But because those layers are stacked in reverse order—or else you would only be able to see the last layer, the most distant spread—the white stroke often overlaps and hides the black stroke for the final day.

Here I would recommend taking the five layers, duplicating them then merging them into a single sixth shape that sits atop the original five layers. I would eliminate the fill colour from the shape and then put the outline to black, that way the final borders of the lava flow in the graphic could be seen for the entirety of the flow.

But overall, this was a really nice piece that provides a lot of context to the lava flow.

Credit for the piece goes to the BBC graphics department.

Out with the New, In with the Old

After twenty years out of power, the Taliban in Afghanistan are back in power as the Afghan government collapsed spectacularly this past weekend. In most provinces and districts, government forces surrendered without firing a shot. And if you’re going to beat an army in the field, you generally need to, you know, fight if you expect to beat them.

I held off on posting anything about the Taliban takeover of Afghanistan simply because it happened so quick. It was not even two months ago when they began their offensive. But whenever I started to prepare a post, things would be drastically different by the next morning.

And so this timeline graphic from the BBC does a good job of capturing the rapid collapse of the Afghan state. It starts in early July with a mixture of blue, orange, and red—we’ll come back to the colours a bit later. Blue represents the Afghan government, red the Taliban, and orange contested areas.

The start of the summer offensive

The graphic includes some controls at the bottom, a play/pause and forward/backward skip buttons. The geographic units are districts, sub-provincial level units that I would imagine are roughly analogous to US counties, but that’s supposition on my part. Additionally the map includes little markers for some of the country’s key cities. Finally in the lower right we have a little scorecard of sorts, showing how many of the nearly 400 districts were in the control of which group.

Skip forward five weeks and the situation could not be more different.

So much for 20 years.

Almost all of Afghanistan is under the control of the Taliban. There’s not a whole lot else to say about that fact. The army largely surrendered without firing a shot. Though some special forces and commando units held out under siege, notably in Kandahar where a commando unit held the airport until after the government fell only to be evacuated to the still-US-held Hamid Karzai International Airport in Kabul.

My personal thoughts, well you can blame Biden and the US for a rushed US exodus that looks bad optically, but the American withdrawal plan, initiated by Trump let’s not forget, counted on the Afghan army actually fighting the Taliban and the government negotiating some kind of settlement with the Taliban. Neither happened. And so the end came far quicker than anyone thought possible.

But we’re here to talk graphics.

In general I like this. I prefer this district-level map to some of the similar province-level maps I have seen, because this gives a more granular view of the situation on the ground. Ideally I would have included a thicker line weight to denote the provinces, but again if it’s one or the other I’d opt for district-level data.

That said, I’d probably have used white lines instead of black. If you look in the east, especially south and east of Kabul, the geographically small areas begin to clump up into a mass of shapes made dark by the black outlines. That black is, of course, darker than the reds, blues, and yellows. If the designers had opted for white or even a light shade of grey, we would enhance the user’s ability to see the district-level data by dropping the borders to the back of the visual hierarchy.

Finally with colours, I’m not sure I understand the rationale behind the red, blue, yellow here. Let’s compare the BBC’s colour choice to that of the Economist. (Initially I was going to focus on the Economist’s graphics, but last minute change of plans.)

Another day, more losses for the government

Here we see a similar scheme: red for the Taliban, blue for the government. But notably the designers coloured the contested areas grey, not yellow. We also have more desaturated colours here, not the bright and vibrant reds, blues, and yellows of the BBC maps above.

First the grey vs. yellow. It depends on what the designers wanted to show. The grey moves the contested districts into the background, focusing the reader’s attention on the (dwindling) number of districts under government control. If the goal is to show where the fighting is occurring, i.e. the contest, the yellow works well as it draws the reader’s attention. But if the goal is to show which parts of the country the Taliban control and which parts the government, the grey works better. It’s a subtle difference, I know, but that’s why it would be important to know the designer’s goal.

I’ll also add that the Economist map here shows the provincial capitals and uses a darker, more saturated red dot to indicate if they’d fallen to the Taliban. Contrast that with the BBC’s simple black dots. We had a subtler story than “Taliban overruns country” in Afghanistan where the Taliban largely did hold the rural, lower populated districts outside the major cities, but that the cities like the aforementioned Kandahar, Herat, Mazar-i-Sharif held out a little bit longer, usually behind commando units or local militia. Personally I would have added a darker, more saturated blue dot for cities like Kabul, which at the time of the Economist’s map, was not under threat.

Then we have the saturation element of the red and blue.

Should the reds be brighter, vibrant and attention grabbing or ought they be lighter and restrained, more muted? It’s actually a fairly complex answer and the answer is ultimately “it depends”. I know that’s the cheap way out, but let me explain in the context of these maps.

Choropleth maps like this, i.e. maps where a geographical unit is coloured based on some kind of data point, in this instance political/military control, are, broadly speaking, comprised of large shapes or blocks of colour. In other words, they are not dot plots or line charts where we have small or thin instances of colour.

Now, I’m certain that in the past you’ve seen a wall or a painting or an advert for something where the artist or designer used a large, vast area of a bright colour, so bright that it hurt your eyes to look at the area. I mean imagine if the walls in your room were painted that bright yellow colour of warning signs or taxis.

That same concept also applies to maps, data visualisation, and design. We use bright colours to draw attention, but ideally do so sparingly. Larger areas or fields of colours often warrant more muted colours, leaving any bright uses to highlight particular areas of attention or concern.

Imagine that the designers wanted to highlight a particular district in the maps above. The Economist’s map is better designed to handle that need, a district could have its red turned to 11, so to speak, to visually separate it from the other red districts. But with the BBC map, that option is largely off the table because the colours are already at 11.

Why do we have bright colours? Well over the years I’ve heard a number of reasons. Clients ask for graphics to be “exciting”, “flashy”, “make it sizzle” because colours like the Economist’s are “boring”, “not sexy”.

The point of good data visualisation, however, is not to make things sexy, exciting, or flashy. Rather the goal is clear communication. And a more restrained palette leaves more options for further clarification. The architect Mies van der Rohe famously said “less is more”. Just as there are different styles of architecture we have different styles of design. And personally my style is of the more restrained variety. Using less leaves room for more.

Note how the Economist’s map is able to layer labels and annotations atop the map. The more muted and desaturated reds, blues, and greys also allow for text and other artwork to layer atop the map but, crucially, still be legible. Imagine trying to read the same sorts of labels on the BBC map. It’s difficult to do, and you know that it is because the BBC designers needed to move the city labels off the map itself in order to make them legible.

Both sets of maps are strong in their own right. But the ultimate loser here is going to be the Afghan people. Though it is pretty clear that this was the ultimate result. There just wasn’t enough support in the broader country to prop up a Western style liberal democracy. Or else somebody would have fought for it.

Credit for the BBC piece goes to the BBC graphics department.

Credit for the Economist piece goes to the Economist graphics department.

You Thought That Was All China Was Doing in Its Western Deserts?

Yesterday I wrote about some new ICBM silos China is building in its western desert. These things clearly interest me and so I was doing a little more digging when I found this even more recent article, this one from the BBC about an entirely different ICBM silo field that China is building in another western desert.

In terms of data visualisation and information design, we are looking at the same kind of graphic: an annotated satellite photograph. But the story it paints is the same: China is rapidly expanding its nuclear missile arsenal.

Similar to the earlier piece we see dots to indicate missile silo construction sites. But the Federation of American Scientists noted these silos appear to be at earlier phase of the construction process given that sites were still being cleared and prepared for construction activity.

You get a silo, and you get a silo, and you get a silo…

But put it together with the publicly available information from yesterday and, again, we can only draw the conclusion that China wants to greatly increase its nuclear arsenal. And like yesterday we’re left with the same question:

How will the United States and her allies respond?

Credit for the piece goes to the Federation of American Scientists.