The Earth Is a Bit Bumpy

Last Friday I shared an xkcd post about the relative smoothness of the Earth. This week he posted an illustration but a slightly different scale. You can see more of Earth’s jagged edges.

Gotta love the Star Trek reference. I’m betting he used the length of the Kelvin timeline Enterprise, which I personally dislike, as it’s significantly larger than the prime timeline Enterprise of Shatner and Nimoy.

Anyway, Happy Friday, all.

Credit for the piece goes to Randall Munroe.

Viral Mutations

With Covid-19, one of the big challenges we face is the rapid mutations in the viral genetic code that have produced several beneficial—from the virus’ standpoint—adaptations. Several days ago the New York Times published a nice, illustrated piece that showed just what these mutations look like.

Of course, these were not just nice illustrations of protein molecules, but the screenshot below is of the code itself and you can see how just a few alterations can produce subtle, but impactful, effects.

In a biological sense, these mutations are nothing new. In fact, humanity wouldn’t be humanity but for mutations. Rather we are seeing evolution play out in front of our eyes—albeit eyes locked in the same household for nearly a year now—as the virus evolves adaptations better suited to spreading and surviving in a host population.

The piece includes several illustrations, but begins with an overall, simplified diagram of the virus and where its genetic code lies. And then breaks that code down similar to a stacked bar chart.

Designers identify where in the code the different mutations occur and the type of mutation. Later on in the piece we see a map of where this particular variant can be found.

I might come back to that map later, so I won’t comment too much on it here.

But I think this piece does a great job of showcasing just what we mean when we talk about virus mutations. It’s really just a beneficial slip up in the genetic alphabet.

Credit for the piece goes to Jonathan Corum and Carl Zimmer.

The Earth Is Actually Quite Smooth

At scale. Not quite as smooth as a billiards ball, as is often claimed. But still, with the majority of the Earth’s surface covered by water, the highest mountains of Everest and K2 make for mere fractions of differences in height relative to the Earth’s size.

But that did not stop xkcd from making a scale model of Earth.

Credit for the piece goes to Randall Munroe.

How Would the Covid-19 Vaccines Work

Over the last week or so, we have been receiving some encouraging news from the makers of three viable Covid-19 vaccines: Pfizer, Moderna, and AstraZeneca. All three have reported their vaccines as at least 90% effective. This doesn’t mean the relevant regulatory agencies have verified that data, but it’s better than injecting ourselves with bleach.

Keep this in mind, though, a full vaccination roll out will take months. Having 20–40 million doses is great, but the population of the United States is 330 million. The expectation is a return to normalcy will not really begin until the end of Q3 or beginning of Q4 2021.

This article from the Washington Post does a good job of explaining some of the next steps—and some of the significant logistical hurdles. They illustrate part of the process of shipping the Pfizer vaccine, which needs to remain cooled -70ºC. That’s -94ºF. A wee bit colder than most normal freezers operate.

The Post article also illustrates how the Pfizer/Moderna type of vaccine works—the Pfizer and Moderna tackle it one way whilst AstraZeneca tackles it via a second method.

The first steps in the process.

There’s a lot going on here, but I like the simplified approach the designers took. This whole situation is complicated, but here we see the process distilled to its most essential elements. And the restrained use of colour helps tremendously.

The vial and then needle are filled red, and that red colour carries through into the messenger RNA (mRNA) that is absorbed by the cells and ultimately creates the spike proteins used by the virus (not the virus itself).

Credit for the piece goes to Carolyn Y. Johnson and Aaron Steckelberg.

Wear a Mask

It sounds so easy, but too many don’t do it.

Yesterday, Agence France-Presse published an article about a recent study in the Journal of the American Medical Association that examined the efficacy of the coronavirus’ airborne spread potential.

The study centred on a bus trip in eastern China from January, before the widespread adoption of masks as common courtesy let alone mandated safety equipment. Nobody on the bus of 68 travellers wore a mask and the bus’ air conditioning system recycled the air inside the vehicle. (Remember the importance of cycling and filtering air inside subway cars?)

Researchers then mapped the location of patient zero, conveniently from my point of view in the centre of the bus. It should also be noted that patient zero was also asymptomatic at the time of the bus trip. Then researchers mapped the seats of those infected on the bus and this is what they found.

One of the key findings is these conditions, recirculated air amongst people not wearing masks, the virus was able to infect people outside the 2-metre safety radius (6-feet in the non-metric States).

Now from a design standpoint, I really like this graphic. It shows people’s seats and their condition to show the physical spread of the virus from patient zero. (Eerily, people far away were infected whilst one person sitting next to patient zero remained uninfected.) Not only that, but from a chain of transmission standpoint, the designer also included how many people these newly infected victims infected. Some infected nobody further whilst others infected up to four additional people.

My only real quibble here is with the colours used for the status of the infected. I think the light grey works well for those who were not diagnosed with Covid-19. But the green, yellow, blue, and red don’t quite work for me here. The value of the yellow is too close to the grey and consequently almost the mildly symptomatic people fall almost into the background. Compare that to the asymptomatic victims in green, who appear far more prominently.

I understand the desire to progress from mild to moderate vs. asymptomatic. So I wonder if those with mild symptoms were given a light blue and those with moderate a dark blue to contrast with the asymptomatic green. Of course, we still run into the red-green issue, but the dotted circle around patient zero mitigates that concern.

Remember, this was all among people not wearing masks. This piece strongly shows how important it is to wear a mask—not just to reduce the risk of receiving the virus, but to reduce your risk of spreading the virus if you are an asymptomatic case. (To be fair to the people on the bus, we knew very little about the virus in January and who knows what they knew as China was still attempting to downplay the virus.)

The point? Wear a mask.

Credit for the piece goes to John Saeki.

A Foot by Any Other Name

Measurement systems are important. They allow us to compare objects, buy and sell goods, and get from Chicago to Philadelphia. The latter, according to Google, is 759.6 miles. Or 4,010,688 feet.

But what feet?

In this piece from the New York Times we get a look at the two different foot measurements used in the United States. The article provides insight into the history of why we have a standard system of measurement.

Accompanying the wonderful article is an illustration showing how those two feet differ. It’s a simple, scaled illustration. But it does the job.

Of course we would all be better off if the United States joined the rest of the world in using the metric system. Like that time we lost a space probe because we failed to convert from English imperial to metric.

Credit for the piece goes to Eleanor Lutz.

Sweet Summer Air of Subway Cars

For those of my readers who live in a city where the subway or underground is a great means of getting around the city, you know you really miss that late Saturday night/early Sunday morning bouquet in the air. Though as this New York Times piece explains, sure it smells bad, but that air is probably safer than you dining indoors at a restaurant or even a child attending class in person.

The piece focuses on New York City subway cars, but they are very similar to the rest of the stock used in the United States. It uses a scrolling reveal to show how the air circulation and filtration systems work. Then it concludes with a model of how a person sneezing appears, both with and without a mask. (Spoiler, wear a mask.)

It’s a really nicely done and informative piece. It compares the rate of air recycled in a subway car to that of several other locations, and the results were a bit surprising to me. Of course, early on in the pandemic before we began to fully understand it, the threat was thought to be from contaminated surfaces—and let’s be honest, there are a lot of contaminated surfaces in a New York City subway car—but we now know the real risk is particles breathed/coughed/sneezed out from one’s mouth and nose. And we can now see just how efficient subways are at cycling and filtering that air.

Credit for the piece goes to Mika Gröndahl, Christina Goldbaum, and Jeremy White.

All the Little Spacecraft

Early tomorrow morning, weather permitting, NASA’s Perseverance rover will blast off from Cape Canaveral on a six-plus month trip to Mars. There, hopefully it will land successfully and join all the rovers that have come before.

And so this piece from the New York Times feels appropriate. It’s a great illustration of all the spacecraft we have sent into space, including the active and inactive, with some notable exceptions.

What spacecraft are in orbit of Earth and headed to Mars.

I really like how it pays attention not just to the planets and their satellites (like the Moon), but also the comets, asteroids, and even the Lagrange points. And it does this all with small illustrations of the spacecraft.

Credit for the piece goes to Jonathan Corum.

UK–Narnia Border

Yesterday the United Kingdom was supposed to leave the European Union. Again. Boris would rather be dead in a ditch. But he’s neither dead nor in a ditch. And the UK is still in the EU. So let’s enjoy the moment and reflect on this xkcd piece from the other day. And then enjoy the weekend.

But what about the UK–Shire border? Or UK–Westeros?
But what about the UK–Shire border? Or UK–Westeros?

Credit for the piece goes to Randall Munroe.

Leaf Peeping

Autumn arrived this week in Philadelphia. And with the cooler weather came blustery winds blowing yellowing leaves from city trees. The yellows and reds of trees beneath blue skies makes for some great photography. But what is really going on? Thankfully, the Washington Post published an article exploring where and why the leaves change colour (or don’t).

The star of the piece is the large map of the United States that shows the dominant colours of forests.

All the colours
All the colours

Little illustrations and annotations dot the map showing how particular trees (whose leaf shapes are shown) turn particular colours. The text in the piece elaborates on that and explains what is going on with pigments in the leaves. It adds to that how weather can impact the colour change.

Later on in the piece, a select set of photos for specific locations show at a more micro-level, how and where leaf colours change.

Overall, a solid piece for those of you who enjoy leaf peeping to read before this weekend.

Credit for the piece goes to Lauren Tierney and Joe Fox.