A4 For Ever (and Ever)

Most of my readers know that I am a designer who works in all formats. But, I really love working in print. Colours, textures, and the physicality of it all. Give me a foil stamp or metallic ink any day.

Any American designer who’s ever worked for an overseas client or overseas designer who’s ever worked for an American client knows all about the US Letter vs A4 debate.

For those that don’t, the US (along with Canada, Mexico, and a very few other countries) use what we call letter size paper. The rest of the world uses A4, part of the ISO 216 international standard. A4 has some special properties that make it the superior choice in my opinion.

But this is a Friday, so we’re here for the lighter take. And for that we have a video by CCP Grey, who explains some of the properties of A4 and then provides a fascinating perspective on it all. It’s about nine minutes long for what it’s worth.

A4 is in the middle.

Credit for the piece goes to CCP Grey.

The Mars Rovers

Perseverance landed on Mars on 18 February, almost a month ago. The video and photography the rover has already sent back has been stunning. We all know she is the most capable rover yet landed on the Red Planet, but what we all want to know is how cute is Perseverance compared to her predecessors?

Thankfully for that we have xkcd.

Still a big fan of Spirit and Opportunity. Designed to last 3 months, it trekked on for over 14 years.

Credit for the piece goes to Randall Munroe.

Another Look at 500,000

Yesterday we looked at how the New York Times covered the deaths of 500,000 Americans due to Covid-19. But I also read another article, this by the BBC, that attempted to capture the scale of the tragedy.

Instead of looking at the deaths in a timeline, the BBC approached it from a cumulative impact, i.e. 500,000 dead all in one go. To do this, they started with an illustration of 1,000 people. Then they zoomed out and showed how that group of 1,000 fit into a broader picture of 500,000.

We’re going to take a look at this in reverse, starting with the 500,000.

Half a statistic.

I think this part of the graphic works well. There’s just enough resolution to see individual pixels in the smaller squares, connecting us to the people. And of course the number 500 stacks nicely.

My quibble here might be whether the text overlay masks 8,000 people. Initially, I thought the design was akin to hollow square, but when I looked closer I could see the faint grey shapes of the boxes behind a white overlay. Perhaps it could be a bit clearer if the text fell at the end of all the boxes?

But overall, this part works well. So now let’s look at the top.

1,000 tragedies

This is where I have some issues.

When I first saw this, my eyes immediately went to the visual patterns. On the left and right there are rivers or columns of what look like guys in white t-shirts. Of course, once I focused on those, I saw other repeated patterns, the guy in the black jacket with his arms bent out, hands on his hips. The person in the wheelchair occupies a different amount of area and has a distinct shape and so that stood out too.

Upon even closer inspection, I noticed the pattern began to repeat itself. Every other line repeated itself and with the wheelchair person it was easy to see the images were sometimes just flipped to look different.

Now, allow me to let you in on a secret, unless you gave a designer a budget of infinite time, they wouldn’t illustrate 1,000 actual people to fill this box. We don’t have time for that. And I’ll also admit that not all designers are good illustrators—myself first and foremost. A good design team for an organisation that uses illustration should have either a full-time illustrator, or a designer who can capably illustrate things.

But this gets to my problem with the graphic. I normally can distance myself from reading a piece to critiquing it. But here, I immediately fixated on the illustrations, which is not a good sign.

There are three things I think that could have been done. The first two are relatively simple fixes whilst the third is a bit grander in scope.

First, I wonder if a little more time could have been spent with the illustrations. For one, white t-shirt guy, I don’t see his illustration reused, so why not change the colour of his t-shirt. Maybe in some instances make it purple, or orange, or some other colour. I think re-colouring the outfits of the people could actually solve this problem a good bit.

But second, if the patterns still appear visible to readers, mix it up a bit. I understand the lack of desire to spend time creating an individualised row for each row. Crafting each row person by person probably is out of the time requirements—though maybe the people above the designer(s) should know that content takes time to create. So what about repeating smaller blocks? I counted 20 rows, which means there should be 50 people per row. Make each row about ten blocks, and have several different blocks from which you can choose. Ideally, you have more blocks than you need per row, so not all figures are repeated, but if constrained, just make sure that no two rows have the same alignment of blocks.

Thirdly, and here’s the one that would really have required more time for the designer to do their job, make the illustrations meaningful. In a broad sense, we do have some statistics on the deaths in the United States. According to the CDC, 63% of deaths have been by white non-Hispanics, 15% by Black non-Hispanics, and 12% by Hispanic/Latino, 4% by Asian Americans, 1% by Native Americans, 0.3% by Hawaiian and Pacific Islander, and 4% by multiple non-Hispanic. Using those numbers, we would need 630 obviously white illustrations, 150 obviously Black, and so on.

If the designer had infinite time, the illustrations could also be made to try and capture age as well. Older people have been hit harder by this pandemic, and the illustrations could skew to cover that cohort. In other words, few young people. According to the CDC, fewer than 5% of deaths have been by people aged under 40. In other words, no baby illustrations needed.

That’s not to say babies haven’t died—87 deaths of people between 0 and 4 have been reported—but that when creating a representative average, they can be omitted, because that’s less than 0.1%, or not even 1 out of 1000.

To reiterate though, that third concept would take time to properly execute. And it would also require the skills to execute it properly. And I am no illustrator, so could I draw enough representative people to fake 1,000? Sure, but time and money.

The first two options are probably the most effective given I’d bet this was a piece thought up with little time to spare.

Credit for the piece goes to the BBC graphics team.

Appliance Matrix

Well, it’s Friday. And in the Northeast that means another snowstorm. In normal times, that would mean a nice half-hour walk to the office wherein my overcoat would likely become covered in snow and my trousers soaked in disgusting, salty, slush water. In other words, I’d need to wash and dry my clothes. But what household appliances should I use?

Thankfully, over at xkcd, Randall Munroe tackled that very problem with this helpful matrix.

Of course my aforementioned scenario is entirely moot, because like so many of you, I haven’t seen my office nor really left my flat in 11 months now. But here’s looking at you vaccines.

Credit for the piece goes to Randall Munroe.

The Earth Is a Bit Bumpy

Last Friday I shared an xkcd post about the relative smoothness of the Earth. This week he posted an illustration but a slightly different scale. You can see more of Earth’s jagged edges.

Gotta love the Star Trek reference. I’m betting he used the length of the Kelvin timeline Enterprise, which I personally dislike, as it’s significantly larger than the prime timeline Enterprise of Shatner and Nimoy.

Anyway, Happy Friday, all.

Credit for the piece goes to Randall Munroe.

Viral Mutations

With Covid-19, one of the big challenges we face is the rapid mutations in the viral genetic code that have produced several beneficial—from the virus’ standpoint—adaptations. Several days ago the New York Times published a nice, illustrated piece that showed just what these mutations look like.

Of course, these were not just nice illustrations of protein molecules, but the screenshot below is of the code itself and you can see how just a few alterations can produce subtle, but impactful, effects.

In a biological sense, these mutations are nothing new. In fact, humanity wouldn’t be humanity but for mutations. Rather we are seeing evolution play out in front of our eyes—albeit eyes locked in the same household for nearly a year now—as the virus evolves adaptations better suited to spreading and surviving in a host population.

The piece includes several illustrations, but begins with an overall, simplified diagram of the virus and where its genetic code lies. And then breaks that code down similar to a stacked bar chart.

Designers identify where in the code the different mutations occur and the type of mutation. Later on in the piece we see a map of where this particular variant can be found.

I might come back to that map later, so I won’t comment too much on it here.

But I think this piece does a great job of showcasing just what we mean when we talk about virus mutations. It’s really just a beneficial slip up in the genetic alphabet.

Credit for the piece goes to Jonathan Corum and Carl Zimmer.

The Earth Is Actually Quite Smooth

At scale. Not quite as smooth as a billiards ball, as is often claimed. But still, with the majority of the Earth’s surface covered by water, the highest mountains of Everest and K2 make for mere fractions of differences in height relative to the Earth’s size.

But that did not stop xkcd from making a scale model of Earth.

Credit for the piece goes to Randall Munroe.

How Would the Covid-19 Vaccines Work

Over the last week or so, we have been receiving some encouraging news from the makers of three viable Covid-19 vaccines: Pfizer, Moderna, and AstraZeneca. All three have reported their vaccines as at least 90% effective. This doesn’t mean the relevant regulatory agencies have verified that data, but it’s better than injecting ourselves with bleach.

Keep this in mind, though, a full vaccination roll out will take months. Having 20–40 million doses is great, but the population of the United States is 330 million. The expectation is a return to normalcy will not really begin until the end of Q3 or beginning of Q4 2021.

This article from the Washington Post does a good job of explaining some of the next steps—and some of the significant logistical hurdles. They illustrate part of the process of shipping the Pfizer vaccine, which needs to remain cooled -70ºC. That’s -94ºF. A wee bit colder than most normal freezers operate.

The Post article also illustrates how the Pfizer/Moderna type of vaccine works—the Pfizer and Moderna tackle it one way whilst AstraZeneca tackles it via a second method.

The first steps in the process.

There’s a lot going on here, but I like the simplified approach the designers took. This whole situation is complicated, but here we see the process distilled to its most essential elements. And the restrained use of colour helps tremendously.

The vial and then needle are filled red, and that red colour carries through into the messenger RNA (mRNA) that is absorbed by the cells and ultimately creates the spike proteins used by the virus (not the virus itself).

Credit for the piece goes to Carolyn Y. Johnson and Aaron Steckelberg.

Wear a Mask

It sounds so easy, but too many don’t do it.

Yesterday, Agence France-Presse published an article about a recent study in the Journal of the American Medical Association that examined the efficacy of the coronavirus’ airborne spread potential.

The study centred on a bus trip in eastern China from January, before the widespread adoption of masks as common courtesy let alone mandated safety equipment. Nobody on the bus of 68 travellers wore a mask and the bus’ air conditioning system recycled the air inside the vehicle. (Remember the importance of cycling and filtering air inside subway cars?)

Researchers then mapped the location of patient zero, conveniently from my point of view in the centre of the bus. It should also be noted that patient zero was also asymptomatic at the time of the bus trip. Then researchers mapped the seats of those infected on the bus and this is what they found.

One of the key findings is these conditions, recirculated air amongst people not wearing masks, the virus was able to infect people outside the 2-metre safety radius (6-feet in the non-metric States).

Now from a design standpoint, I really like this graphic. It shows people’s seats and their condition to show the physical spread of the virus from patient zero. (Eerily, people far away were infected whilst one person sitting next to patient zero remained uninfected.) Not only that, but from a chain of transmission standpoint, the designer also included how many people these newly infected victims infected. Some infected nobody further whilst others infected up to four additional people.

My only real quibble here is with the colours used for the status of the infected. I think the light grey works well for those who were not diagnosed with Covid-19. But the green, yellow, blue, and red don’t quite work for me here. The value of the yellow is too close to the grey and consequently almost the mildly symptomatic people fall almost into the background. Compare that to the asymptomatic victims in green, who appear far more prominently.

I understand the desire to progress from mild to moderate vs. asymptomatic. So I wonder if those with mild symptoms were given a light blue and those with moderate a dark blue to contrast with the asymptomatic green. Of course, we still run into the red-green issue, but the dotted circle around patient zero mitigates that concern.

Remember, this was all among people not wearing masks. This piece strongly shows how important it is to wear a mask—not just to reduce the risk of receiving the virus, but to reduce your risk of spreading the virus if you are an asymptomatic case. (To be fair to the people on the bus, we knew very little about the virus in January and who knows what they knew as China was still attempting to downplay the virus.)

The point? Wear a mask.

Credit for the piece goes to John Saeki.

A Foot by Any Other Name

Measurement systems are important. They allow us to compare objects, buy and sell goods, and get from Chicago to Philadelphia. The latter, according to Google, is 759.6 miles. Or 4,010,688 feet.

But what feet?

In this piece from the New York Times we get a look at the two different foot measurements used in the United States. The article provides insight into the history of why we have a standard system of measurement.

Accompanying the wonderful article is an illustration showing how those two feet differ. It’s a simple, scaled illustration. But it does the job.

Of course we would all be better off if the United States joined the rest of the world in using the metric system. Like that time we lost a space probe because we failed to convert from English imperial to metric.

Credit for the piece goes to Eleanor Lutz.