Ranking the Red Sox Prospects

My regular readers will know that I am a fan of the Boston Red Sox, an American baseball team located in Boston, Massachusetts. I would consider myself a bit more involved than a casual fan in that I keep tabs on the team’s prospects.

For those unfamiliar with baseball, the sport works by keeping development pipelines of young talent fed through what we call a farm system. In essence a number of teams owned or contractually linked to the Major League team develop young players until they are ready to debut at the sport’s highest level.

Very few of total number of players in the system will ever get called up to “the Show”. In fact, in the history of the sport only 20,000 men have reached that level. Most of the rest will peak somewhere in the Minor Leagues. Most that reach the Majors will have been at some point prospects. And so to keep tabs on your team’s prospects and farm system sets one apart, in my mind, from the casual fan who simply knows a few of the team’s star players and enjoys a hot dog and a pint of beer at the stadium a few times a summer.

Red Sox fans are fortunate to have a website dedicated to coverage of Boston’s farm system, SoxProspects.com. They rank the system’s Top 60 prospects using their own methodology and research and publish the list online for fans like myself to enjoy.

Last week they updated their rankings. Long story short, the pandemic has impacted baseball and the development of young players. Consequently, the rankings changed significantly. What I really wanted to see was a visualisation of all the changes. So I took it upon myself to do just that using their data.

Hopefully we get a good player or two out of this

Now, if you also happen to be a Red Sox fan, I highly recommend their site. It’s fantastic. Normally I would take the train up to Trenton and see the Portland affiliate when it played there, but the Trenton team no longer exists. I’m not sure when I’ll get to see a Red Sox minor league team again. But hopefully sometime soon, because there look to be some good players coming up.

So I’ll be looking forward to, hopefully, a good run of contending teams in the coming years.

Credit for the piece is mine.

Tiffany

Happy Friday, all. We made it through another week of Covid, vaccinations, asteroids, and all that pleasant stuff. So let’s end with an upbeat note.

Over on YouTube there’s a channel I have long enjoyed, CCP Grey, who creates videos about, well lots of things, but sometimes really interesting historical, geographical, and political topics.

This week he released a video about Tiffany. As in the name Tiffany.

In addition to some great 80s aesthetics, the video touches on a couple of things that particularly interest me.

You see names are an important part of genealogical research. After all, almost all of us have names. (Some infants died without names.) Now in my family, on both my mother’s and father’s side I have a lot of Johns. In fact, I broke a line of five consecutive John Barrys. But occasionally a family will have a rarer or more uncommon name that allows you to trace that individual and therefore his or her family through time and space/place.

Grey tracks the history of the name Tiffany from its possible origin to some reasons for its popularity in the 1980s. And that includes some great graphics like this chart tracking the number of children with the name.

Thinking I need breakfast…

In the screenshot above you can see one thought he has on why the name took off in the latter half of the 20th century after languishing for centuries.

But he also examined the family history of one Tiffany and how that became important in the cultural zeitgeist. And to do so he used a family tree.

Family trees, with so many deaths in infancy

It’s a nine-minute long video and well worth your time.

I think what’s interesting to consider, however, is how this story could be told for many if not most names. There’s a reason they exist and how, by pure happenstance, they survive and get passed down family lines.

Though I have to say I did a quick search in my family tree and I have not a single Tiffany.

Credit for the piece goes to CCP Grey.

Threats from Little Bodies Inside and Outside

Of course the inside threat are those little bodies of coronavirus causing Covid-19. We cover them a lot here. But there are also threats from little bodies outside, way outside. Like asteroids impacting us. And that was the news yesterday when NASA announced improved data from a mission to the asteroid Bennu allowed it to refine its orbital model.

And we have reason to ever just so very slightly worry. Because there is a very slight chance that Bennu will impact Earth. In 2182. The New York Times article where I read the news included a motion graphic produced by NASA to explain that the determining factor will be a near pass in 2135.

Too many keys

Essentially, the exact course Bennu takes as it passes Earth in 2135 will determine its path in 2182. But just a few slight variations could send it colliding into Earth. Though, to be clear, it’s only a 1-in-1750 chance.

NASA used the metaphor of keyholes to explain the concept. The potential orbits in 2135 function as keyholes and should Bennu pass into the right keyhole, it will setup a collision with Earth in 2182. Hence the use of little keyholes in the motion graphic that accompanied the article.

But who knows, if we’re lucky the United Federation of Planets will still be formed in 2161 and the starship Enterprise will gently nudge Bennu back into a non-threatening orbit.

Credit for the piece goes to NASA.

The Pandemic of the Unvaccinated

Get your shots.

It’s pretty much that simple. But for just under half the country, it’s not getting through. So I went looking for some data on the breakdown of Covid-19 cases by vaccinated and unvaccinated people.

I found an analysis by the Kaiser Family Foundation (KFF), a non-profit that focuses on health and healthcare issues. They collected the data made available by 24 states—not all states provide a breakdown of breakthrough cases—and what we see across the country is pretty clear. If you want more details on their methodology, I highly recommend you check out their analysis.

Breakthrough cases

In all but Arizona and Alaska, vaccinated people account for less than 4% of Covid-19 cases. In most of these states, it’s less than 2%. For the states that we regularly cover here—Pennsylvania, New Jersey, Delaware, Virginia, and Illinois—we have New Jersey, Delaware, and Virginia represented in the data set.

Delaware leads the three with vaccinated people accounting for just 1% of Covid-19 cases. Virginia is 0.7% and New Jersey is just 0.2%. In other words, in New Jersey almost nobody vaccinated is catching Covid-19 over the observation period.

And when we look at the vaccinated population, we can see what breakthrough events—cases, hospitalisations, and deaths—they are experiencing.

In almost all states, less than 0.5% of vaccinated people are getting Covid-19. Only in Arkansas do we see a number greater than that: 0.54%. In no state do we have more than 0.6% of vaccinated people requiring hospitalisation. And with that number so low, it won’t surprise you that in no state do we have more than 0.01% of vaccinated people dying.

In other words, the rapidly climbing numbers of new cases and slowly rising deaths that we looked at yesterday, that’s almost all in people who haven’t yet gotten vaccinated.

Get your shots.

Credit for the piece is mine.

Covid Update: 9 August

Late last week I provided a brief update on the Covid-19 situation in Pennsylvania, New Jersey, Delaware, Virginia, and Illinois. Today I wanted to circle back to my statement that I’d update everyone again early this week. Of course, we had to wait until states began reporting their Monday data to get a better sense of where we are at in terms of new cases and deaths.

Spoiler: nowhere good.

Let’s start, as usual, with new cases.

New case curves for PA, NJ, DE, VA, & IL.

We can see just from the tail end of the charts above that new case growth is accelerating in nearly all five states. Nearly because New Jersey’s growth has remained fairly constant, in other words the number of new people getting infected is not becoming larger each day but remaining relatively flat. That said, compared to 28 July, my last more thorough update, the seven-day average for new cases is still up by 66%.

In the other four states we see accelerating growth, i.e. the number of people infected grows daily. Virginia and Illinois are perhaps in the worst positions. Consider that earlier this spring during the Third Wave, Virginia peaked with a seven-day average of 1615 new cases per day. Yesterday the seven-day average reached 1625. This Fourth Wave is making more people sick now than they were in the spring. Illinois is not yet at the peak of its Third Wave, 3390 new cases per day, but yesterday the Land of Lincoln reached 2713. It’s not far from that ugly benchmark. Can Illinois’ seven-day average see an increase of about 600 new cases per day in a week? Consider that one week ago the average was at 1914. That’s an 800-new case increase. I would expect that if my next update is next Tuesday we will find Illinois in a worse position now than it was in this past spring.

What about the last two states of the tri-state area? Fortunately—for now—both Pennsylvania and Delaware remain below, roughly by half or so, their springtime peaks during the Third Wave. In part, that’s because—along with New Jersey—the Northeast has some of the highest rates of vaccination. But none of those states are near the levels we would need for herd immunity, especially given the increased transmissibility of the Delta variant.

In Pennsylvania the seven-day average for new cases is now just shy of 1500 new cases per day. Interestingly, if we halve the Monday data that includes both Sunday and Monday the daily numbers of new cases have declined for five consecutive days. I wouldn’t expect that trend to continue given the rampancy with which Delta is spreading throughout the Commonwealth, but that would be the signal in the data we would be looking for when this Fourth Wave breaks.

Delaware reports much the same. Cases are significantly up, but now so much so as to outpace the Third Wave. The First State’s seven-day average now sits at 185 new cases per day, but for the past four days the daily number has exceeded 200. Unlike Pennsylvania, that’s not the signal we would want to see to give us a sense the wave might be breaking.

What about deaths? Last week I mentioned we were seeing those numbers begin to creep back up despite falling during the initial weeks of the Delta wave.

Death curves for PA, NJ, DE, VA, & IL.

The tail ends here, with the exception of Illinois, are far harder to see. In Illinois, on 28 July the seven-day average for deaths bottomed out at 4 deaths per day. Deaths have climbed ever since, tripling to 12 deaths per day. Prior to yesterday, the state had seen double-digit daily deaths for five consecutive days for the first time since early June. These are signs that deaths are heading in the wrong direction. But if we want to try and find a glimmer of hope, those deaths started at 18 on 4 August, but have dropped each day landing at 10 on 8 August and just 6 yesterday. Fingers crossed?

In the remaining states the picture is similar in that deaths are rising, but not nearly as badly as they are in Illinois. In Illinois the death rate tripled, but to be fair it also did so in Delaware. Though that meant climbing from 0.1 to 0.3. In the states where we are seeing deaths from Covid-19, the rates have not even doubled. Pennsylvania and New Jersey are the two closest to hitting that grim number. Their seven-day averages of 3.6 and 3.7, respectively, have reached only 6.6 and 6.4, respectively. Certainly not good, but perhaps we can be cautiously optimistic given the states’ relatively high rate of vaccination.

In Virginia we have seen the death rate climb from an average of 4.4 per day, nearly the same rate as Illinois, which has a lower overall rate of vaccination, to only 5.6 deaths per day as of yesterday.

It is important to note that vaccinations are doing a good job at keeping the vaccinated from needing to go to hospital or even dying. The phrase “pandemic of the unvaccinated” is very accurate. Whilst the vaccinated can become infected, most suffer very mild symptoms or are asymptomatic. The reason for masking is that the Delta variant can infect the vaccinated to such a degree that, whilst not sick, they can infect the unvaccinated.

If you have not been vaccinated yet, it is critical that you do so. They are safe. They are effective. And they are free. There are only a few valid reasons for not receiving the vaccination. And “not wanting it” or “not needing it” or “not trusting the government” or “not sure whence the virus came” are not valid excuses.

If You Can’t Stand the Heat, Cut Your Carbon Emissions

Earlier this morning (East Coast time) the Intergovernmental Panel on Climate Change (IPCC), the UN’s committee studying climate change, released its latest review of climate change. This is the first major review since 2013 and, spoiler, it’s not good.

I’ve read some news articles about the findings, but I want to critique and comment upon some of the graphics contained within the report itself. This started going too long, however, so I think I will break this into several shorter, more digestible chunks.

And I want to start with the first chart, two line charts that lay out the temperature changes we’ve seen.

Going up…

One of the first things I like here is the language. Often we might see these or similar charts that simply state temperatures from the year 1 through 2020. One of the common reasons I hear from people that deny climate change is that “people weren’t recording temperatures back in 1 AD.

They would be correct. We do not have planet-wide meteorological observations from the time of Julius Caesar. But in the year 2021 we do have science. And that allows us to take other evidence, e.g. dissolved carbon dioxide in ice, or tree ring size, &c., and use them to reconstruct the temperature record indirectly.

And reconstruct is the word the IPCC uses to clearly delineate the temperature data pre- and post-1850 when their observed data set begins.

The designers then highlight this observed data set, broadly coinciding with the Industrial Revolution when we as a species began to first emit extra greenhouse gasses into the atmosphere. You can see this as a faint grey background and a darker stroke along the x-axis.

Additionally, the designers used annotations to call out the first main point, that warming in the last almost two centuries is far beyond what we’ve seen in the last two millennia.

The second annotation points to a bar, reminiscent of the range of a box plot, that exists outside the x-axis and almost embedded within the y-axis. This bar captures the range of temperatures reconstructed in the past 100,000 years. And by including it in the chart, we can see that we have just recently begun to exceed even that range.

In the second chart, we have the entire background shaded light grey and the whole x-axis in a darker stroke to remind us that we are now looking at the Industrial/Post-Industrial era. But what this chart does is do what scientists do, test whether natural, non-manmade causes can fully explain the temperature increase.

They can’t.

The chart plots the modelled data looking at just natural causes vs. modelled data looking at natural causes plus human impacts. Those lines and their ranges are then compared to the temperatures we’ve observed and recorded.

Since the 1930s and 40s, it’s been a pretty clear and consistent tracking with natural plus manmade causes. For years the scientific community has been in agreement that humanity is contributing to the rising temperatures. This is yet more evidence to make the point even more conclusively.

These are two really good charts that taken together show pretty conclusively that humanity is directly responsible for a significant portion of Earth’s recent climate change.

I’ll have more on some other notable graphics in the report later in the week, so stay tuned.

Credit for the piece goes to the IPCC graphics team.

Covid Update: 5 August

Note: This was supposed to post Friday morning. But it didn’t for technical reasons. Throwing it up late because I’ll probably wait until Tuesday and the release of Monday data to do another update. And I want people to have the latest charts for the weekend.

Unfortunately, I don’t have a lot of time to write up my usual analysis of the charts. Maybe I’ll do that for Monday, we’ll see. But I do want to post the latest Covid-19 data on cases and deaths before we head into the weekend.

The overall picture is that things are continuing to get worse. You can see that in all states the fourth wave, driven largely by the Delta variant, is here.

New case curves for PA, NJ, DE, VA, & IL.

When we look at deaths, last week I had mentioned how deaths were still trending down. But as a lagging indicator it was just a matter of time before the new cases led to new hospitalisations led to new deaths. And that moment appears to have just arrived.

Death curves for PA, NJ, DE, VA, & IL.

I should point out that Delaware appears to have folded in their probable deaths in with their confirmed deaths, as many states had done months ago. So that spike of 135 new deaths isn’t “real” as in those deaths happened a long time ago. The pre-probable death number was the same as afterwards.

Credit for the piece is mine.

Get Your Shots

I’ve heard a lot about vaccine hesitancy and resistance lately and I mentioned this on Monday. Subsequently, I thought I would try to make a graphic to try and help people understand where some of these excuses fit on the spectrum of rational to irrational—with claims of people being magnetised off the chart in the land of kooky.

But I also realised there’s a second spectrum, albeit far more limited in range, of selfishness vs altruism. And there is an interesting shift in how those who waited for the most vulnerable to receive their shots first were, initially, altruistic and rational. But now that those populations have received their vaccines, it’s shifted into an irrational selfish behaviour.

Anyway, I made a few sketches and as I was working on it, there was something in the aesthetic quality of the sketches that I couldn’t quite replicate digitally. And so I present the unpolished rough cut of my graphic.

Just get your shots, people.

For the fuller explanations, I refer you to my aforementioned post earlier this week. This was just an attempt to visualise the two spectrums.

Credit for the piece is mine.

You Thought That Was All China Was Doing in Its Western Deserts?

Yesterday I wrote about some new ICBM silos China is building in its western desert. These things clearly interest me and so I was doing a little more digging when I found this even more recent article, this one from the BBC about an entirely different ICBM silo field that China is building in another western desert.

In terms of data visualisation and information design, we are looking at the same kind of graphic: an annotated satellite photograph. But the story it paints is the same: China is rapidly expanding its nuclear missile arsenal.

Similar to the earlier piece we see dots to indicate missile silo construction sites. But the Federation of American Scientists noted these silos appear to be at earlier phase of the construction process given that sites were still being cleared and prepared for construction activity.

You get a silo, and you get a silo, and you get a silo…

But put it together with the publicly available information from yesterday and, again, we can only draw the conclusion that China wants to greatly increase its nuclear arsenal. And like yesterday we’re left with the same question:

How will the United States and her allies respond?

Credit for the piece goes to the Federation of American Scientists.

It’s the Big Things That’ll Kill You

We can move from the microscopic things that will kill us to the very big things that will kill us. Nuclear missiles.

Because satellite photography from late June indicated that China is presently building over 100 ICBM silos in its western deserts. China has long had nuclear weapons, but has also long kept its arsenal small, compared to the two nuclear behemoths: the United States and the Soviet Union/Russia. But you don’t begin building over 119 missile silos unless you intend to build ICBMs.

To be clear, this doesn’t mean that China will build 119 missiles. More than likely it’ll be a very expensive and potentially deadly shell game. How many missiles are underneath the silo covers? Can you keep track of them? But even if China builds a fraction of 100, modern ICBMs come with multiple independent reentry vehicles (MIRVs) that allow a single missile to target several cities independently.

We also know that China has been building shorter and more intermediate range ICBMs. But some of those are thought to be equipped with conventional warheads, designed to target and sink American supercarriers in the Pacific. The goal to deny American sea and airpower effective bases to defend Taiwan or other allies in the South China Sea.

We know about this most recent buildup because of a Washington Post article that used satellite photography to pinpoint those new silos.

Beware the missile gap

Of course this isn’t news to the defence and intelligence agencies. For sometime now they’ve been warning of China’s build-out of its military capacities. The question will be is how does the United States and her allies respond?

Credit for the piece goes to Planet/Center for Nonproliferation Studies.