to be overturned by the Supreme Court, as seems likely, states have been busy passing laws to both restrict and expand abortion access. This article from FiveThirtyEight describes the statutory activity with the use of a small multiple graphic I’ve screenshot below.
Each little map represents an action that states could have taken recently, for example in the first we have states banning abortion before 13 weeks, i.e. a nearly total ban on abortion. It uses dots, for this map orange, to indicate legislative acts to that effect. But if states have passed multiple legislative acts, e.g. South Dakota when it comes to banning specific types or reasons for abortion, multiple dots are used.
I generally like this, but would have liked to have seen an overview map either at the beginning or end that would put all the states together in context. Dot placement, especially for states like Kentucky, would be tricky, but it would go a way to show how complex and convoluted the issue has become at the state level.
Here’s an interesting post from FiveThirtyEight. The article explores where different states have spent their pandemic relief funding from the federal government. The nearly $2 trillion dollar relief included a $350 billion block grant given to the states, to do with as they saw fit. After all, every state has different needs and priorities. Huzzah for federalism. But where has that money been going?
Enter the bubbles.
This decision to use a bubble chart fascinates me. We know that people are not great at differentiating between area. That’s why bars, dots, and lines remain the most effective form of visually communicating differences in quantities. And as with the piece we looked at on Monday, we don’t have a legend that informs us how big the circles are relative to the dollar values they represent.
And I mention that part because what I often find is that with these types of charts, designers simply say the width of the circle represents, in this case, the dollar value. But the problem is we don’t see just the diameter of the circle, we actually see the area. And if you recall your basic maths, the area of a circle = πr2. In other words, the designer is showing you far more than the value you want to see and it distorts the relationship. I am not saying that is what is happening here, but that’s because we do not have a legend to confirm that for us.
This sort of piece would also be helped by limited duty interactivity. Because, as a Pennsylvanian, I am curious to see where the Commonwealth is choosing to spend its share of the relief funds. But there is no way at present to dive into the data. Of course, if Pennsylvania is not part of the overall story—and it’s not—than an inline graphic need not show the Keystone State. In these kinds of stories, however, I often enjoy an interactive piece at the end wherein I can explore the breadth and depth of the data.
So if we accept that a larger interactive piece is off the table, could the graphic have been redesigned to show more of the state level data with more labelling? A tree map would be an improvement over the bubbles because scaling to length and height is easier than a circle, but still presents the area problem. What a tree map allows is inherent grouping, so one could group by either spending category or by state.
I would bet that a smart series of bar charts could work really well here. It would require some clever grouping and probably colouring, but a well structured set of bars could capture both the states and categories and could be grouped by either.
Overall a fascinating idea, but I’m left just wanting a little more from the execution.
Baseball for the Red Sox starts on Friday. Am I glad baseball is back? Yes?
I love the sport and will be glad that it’s back on the air to give me something to watch. But the But the way it’s being done boggles the mind. Here today I don’t want to get into the Covid, health, and labour relations aspect of the game. But, as the title suggests, I want to look at a graphic that looks at just how bad the Red Sox could be this (shortened) year. And over at FiveThirtyEight, they created a model to evaluate teams’ starting rotations on an ongoing basis.
Form wise, this isn’t too difficult than what we looked at yesterday. It’s a dot plot with the dots representing individual pitchers. The size of the dots represents their number of total starts. This is an important metric in their model, but as we all know size is a difficult attribute for people to compare and I’m not entirely convinced it’s working here. Some dots are clearly smaller than others, but for most it’s difficult for me to clearly tell.
Colour is just tied to the colour of the teams. Necessary? Not at all. Because the teams are not compared on the same plot, they could all be the same colour. If, however, an eventual addition were made that plot the day’s matchups on one line, then colour would be very much appropriate.
I like the subtle addition of “Better” at the top of the plots to help the user understand the constructed metric. Otherwise the numbers are just that, numbers that don’t mean anything.
Overall a solid piece. And it does a great job of showing just how awful the Red Sox starting rotation is going to be. Because I know who Nate Eovaldi is. And I’ve heard of Martin Perez. Ryan Weber I only know through largely pitching in relief last year. And after that? Well, not on this graphic, but we have Eduardo Rodriguez who had corona and, while he has recovered, nobody knows how that will impact people in sports. There’s somebody named Hall who I have never heard of. Then we have Brian Johnson, a root for the guy story of beating the odds to reach the Major Leagues but who has been inconsistent. Then…it is literally a list of relief pitchers.
We dumped the salary of Mookie Betts and David Price and all we got was basically a tee-shirt saying “We still need a pitcher or three”.
Baseball is almost upon us. And oh boy do the Baltimore Orioles look bad. How bad? Historically bad. FiveThirtyEight went so far as to chart the expected WAR, wins above replacement, of each position of all teams since 1973. And the expected Orioles lineup looks remarkably bad.
What is nice about this graphic is the use of the medium grey for each team/year combination. I may have used a filled orange dot instead of open, but the dots do at least standout and show the poor positioning of just about everything but the second baseman.
Credit for the piece goes to the FiveThirtyEight graphics department.
No. Definitely not. But, the position of this article by FiveThirtyEight is that the Phillies, the Philadelphia baseball team that just made the largest guaranteed contract in North American sports, may have purchased the rights to somebody who is a few years past his prime.
The author tracked the performance of similar baseball players over history and found that they peaked earlier and tailed off earlier.
Now, the obvious thing about this graphic that I dislike is the spaghetti-fication of the lines. What does help alleviate it, however, are the greying and lighter weight of the non-identified lines in the background. Interestingly, they are even lighter than the axes’ value lines. There is also a thin outline to the lines that helps them standout against each other.
I also wonder if a few more added benchmark lines would be useful. Elite seasons are defined as those with 8+ wins above replacement (WAR), an advanced measurement statistic. Could that level not be indicated with a line on the y-axis? What about the age of 26, before which the players would have had to produce one and only one 8+ WAR season to be eligible for the data set?
Of course, as I said at the beginning, the answer to this post’s title is no. Harper will make the Phillies a better team and the length of his contract will not be the albatross that was Ryan Howard’s. However, the Phillies may be paying for 13 years of subprime Harper.
Credit for the piece goes to the FiveThirtyEight graphics department.
For my American audience, Happy Thanksgiving. Coffeespoons will be on holiday for the remainder of the week. But don’t worry, we’ll be back. For my non-American audience, we basically celebrate a tale of the Pilgrims feasting with Native Americans after a successful harvest.
Today’s graphic is really just a series of tables. I think I missed this back in 2016 because, surprise, I had just moved to Philadelphia and was still settling into things—including running Coffeespoons. Anyway, FiveThirtyEight published an article trying to discover the most popular dishes. This is just a sampling , a screenshot of the meats. But you should go check it out to see if your favourite dishes made the cut.
Mine did not. I am not a big fan of turkey and am doing a pork roast tomorrow . I guess I could go with the ham in a pinch though.
Wildfires continue to burn across in California. One, the Camp Fire in northern California near Chico, has already claimed 77 lives. But why has this fire been so deadly?
FiveThirtyEight explained some of the causes in an article that features a number of charts and graphics. The screenshot below features a scatter plot looking at the temperature and precipitation recorded from winter through autumn every year since 1895.
The designers did a good job of highlighting the most recent data, separating out 2000 through 2017 with the 2018 data highlighted in a third separate colour. But the really nice part of the chart is the benchmarking done to call out the historic average. Those dotted lines show how over the last nearly two decades, California’s climate has warmed. However, precipitation amounts vary. (Although they have more often tended to be below the long-term average.)
I may have included some annotation in the four quadrants to indicate things like “hotter and drier” or “cooler and wetter”, but I am not convinced they are necessary here. With more esoteric variables on the x- and y-axis they would more likely be helpful than not.
The rest of the piece makes use of a standard fare line chart and then a few maps. Overall, a solid piece to start the week.
Credit for the piece goes to Christie Aschwanden, Anna Maria Barry-Jester, Maggie Koerth-Baker and Ella Koeze.
Your author is back after a few days out sick and then the Armistice Day holiday. But guess what? The elections are not yet all over. Instead, there are a handful of races to call. Below is a screenshot from a FiveThirtyEight article tracking those races still too close to call.
Why are there races? Because often time mail-in ballots need only be postmarked by Election Day. Therefore they can still be arriving in the days after the election and their total must be added to the race. (Plus uncounted/missed ballots et cetera.) For example, the late count and mail-in ballots are what tipped the Arizona senate seat. When we went to bed on Tuesday night—for me Wednesday morning—Arizona was a Republican hold, albeit narrowly. Now that the late count ballots have been counted, it’s a Democratic pickup.
The graphic above does a nice job showing how these races and their late calls are impacting seat changes. Their version for the House is not as interesting because the y-axis scale is so much greater, but here, the user can see a significant shift. The odds were always good that the Republicans would pick up seats—the question was how many. And with Arizona flipping, that leaves two seats on the table. Mississippi’s special election will almost certainly be a Republican hold. The question is what about Florida? The last I saw the race is separated by 0.15% of the vote. That’s pretty tiny.
Credit for the piece goes to the FiveThirtyEight graphics department.
The 2018 midterm elections are finally here. Thankfully for political nerds like myself, the New York Times homepage had a link to a guide of when what polls close (as early as 18.00 Eastern).
It makes use of small multiples to show when states close and then afterwards which states have closed and which remain open. It also features a really nice bar chart that looks at when we can expect results. Spoiler: it could very well be a late night.
But what I really wanted to look at was some of the modelling and forecasts. Let’s start with FiveThirtyEight, because back in 2016 they were one of the only outlets forecasting that Donald Trump had a shot—although they still forecast Hillary Clinton to win. They have a lot of tools to look at and for a number of different races: the Senate, the House, and state governorships. (To add further interest, each comes in three flavours: a lite model, the classic, and the deluxe. Super simply, it involves the number of variables and inputs going into the model.)
The above looks at the House race. The first thing I want to point out is the control on the left, outside the main content column. Here is where you can control which model you want to view. For the whimsical, it uses different burger illustrations. As a design decision, it’s an appropriate iconographic choice given the overall tone of the site. It is not something I would have been able to get away with in either place I have worked.
But the good stuff is to the right. The chart at the top shows the percentage of likelihood of a particular outcome. Because there are so many seats—435 are up for vote—every additional seat is between almost 0 and 3%. But taken in total, the 80% confidence band puts the likely Democratic vote tally at what those arrows at the bottom show. In this model that means picking up between 20 and 54 seats with a model median of 36. You will note that this 80% says 20 seats. The Democrats will need 23 to regain the majority. A working majority, however, will require quite a few more. This all goes to show just how hard it will be for the Democrats to gain a workable majority. (And I will spare you a review of the inherent difficulties faced by Democrats because of Republican gerrymandering after the 2010 election and census.) Keep in mind with FiveThirtyEight’s model that they had Trump with a 29% chance of victory on Election Day 2016. Probability and statistics say that just because something is unlikely, e.g. the Democrats gaining less than 20 seats (10% chance in this model), it does not mean it is impossible.
The cartogram below, however, is an interesting choice. Fundamentally I like it. As we established yesterday, geographically large rural districts dominate the traditional map. So here is a cartogram to make every district equal in size. This really lets us see all the urban and suburban districts. And, again, as we talked about yesterday, those suburban districts will be key to any hope of Democratic success. But with FiveThirtyEight’s design, compared to City Lab’s, I have one large quibble. Where are the states?
As a guy who loves geography, I can roughly place, for example, Kentucky. So once I do that I can find the Kentucky 6th, which will have a fascinating early closing race that could be a predictor of blue waviness. But where is Kentucky on the map? If you are not me, it might be difficult to tell. So compared to yesterday’s cartogram, the trade-off is that I can more easily see the data here, but in yesterday’s piece I could more readily find the district for which I wanted the data.
Over on the Senate side, where the Democrats face an even more uphill battle than in the House, the bar chart at the top is much clearer. You can see how each seat breakdown, because there are so fewer seats, has a higher percentage likelihood of success.
The take away? Yeah, it looks like a bad night for the Democrats. The only question will be how bad does it go? A good night will basically be the vote split staying as it is today. A great night is that small chance—20%, again compared to Trump’s 29% in 2016—the Democrats narrowly flip the Senate.
Below the bar chart is a second graphic, a faux-cartogram with a hexagonal bar chart of sorts sitting above it. This shows the geographic distribution of the seats. And you can quickly understand why the Democrats will not do well. They are defending a lot more seats in competitive states than Republicans. And a lot of those seats are in states that Trump won decisively in 2016.
I have some ideas about how this type of data could be displayed differently. But that will probably be a topic for another day. I do like, however, how those seats up for election are divided into their different categories.
Unfortunately my internet was down this morning and so I don’t have time to compare FiveThirtyEight to other sites. So let’s just wrap this up.
Overall, what this all means is that you need to go vote. Polls and modelling and guesswork is all for nought if nobody actually, you know, votes.
Credit for the poll closing time map goes to Astead W. Herndon and Jugal K. Patel.
Credit for the FiveThirtyEight goes to the FiveThirtyEight graphics department.
We are now one week away from the midterm elections here in the United States. Surprisingly, we are going to be looking at election-y things over the course of the next week or so. But before we delve into that, I wanted to focus on the homepage for FiveThirtyEight, the below screenshot is from my laptop.
The reason I wanted to call attention to it is that right-most column of content. The site does a great job of succinctly providing the latest forecasts and polling number on the two main midterm results, federal representation in the House and Senate, along with polling numbers for President Trump.
Starting from the bottom, the polling numbers chart works really well. It clearly and effectively shows the latest approval/disapproval numbers and their longer term trend whilst providing a link to a page of deeper data. It’s very effective.
Moving up we have the House forecasts. These are tricker to see because so many of the more urban and suburban districts are inherently small geographically ergo very difficult to see in a small map. But the map does the job of at least providing some data along with the key takeaway of the odds of the Democrats flipping or Republicans retaining the House. Again, not surprisingly, it offers a link into the data.
The Senate map is the one where I have the most difficulty. Now when we get to the actual page—hopefully later this week—the map shown makes perfect sense because it exists in a large space. That space is needed to show two hexagons that represent each state’s two senators. But, similar to the problem with the House districts, the Northeast is so geographically cramped that it is difficult to show the senators from Maine through Maryland clearly. I wonder if some of the other visualisations on their Senate forecast page would have been a better choice. However, they do at least provide those odds at the top of the graphic.
Credit for the piece goes to the FiveThirtyEight design department.