This past weekend saw some flooding along the East Coast due to the Moon pulling on Earth’s water. In Boston that meant downtown flooding, including Long Wharf. The Boston Globe’sarticle about the flooding dwelt with more impact, causes, and long-term forecasts—none of which really warranted data visualisation or information graphics. Nonetheless, the article included a long time series examining the change in Boston’s sea level relative to the mean.
For me, the graphic works really well. The data strips out the seasonal fluctuations and presents the reader with a clear view of rising sea levels in Boston. If the noisiness of the red line distracts the reader—one wonders if an annual average could have been used—the blue trend line makes it clear.
And that blue trend line has a nice graphic trick to help itself. Note the designer added a thin white stroke on the outside of the line, providing visual separation from the red line below.
My only real critique with the graphic is the baseline and the axis lines. The chart uses solid black lines for the axes, with grey lines running horizontally depicting the deviation from the mean sea level. But the black lines draw the attention of the eye and thus diminish the importance of the 0 inch line, which actually serves as the baseline of the chart.
If I quickly edit the screenshot in Photoshop, you can see how shifting the emphasis subtly changes the chart’s message.
For the last few weeks I have been working on my portfolio site as I update things. (Note to self, do not wait another 15 years before embarking upon such an update.)
At the University of the Arts (requiescat in pace), I took an information design class wherein I spent a semester learning about the electricity generation market in the Philadelphia region. This became a key part of my portfolio when I applied for 99 jobs at the beginning of the Great Recession, had 3 interviews, and only 1 job offer.
That job offer lead me to Chicago and Euromonitor International where one of the first projects I worked on was a datagraphic about throat share, i.e. what drinks products/brands people in different countries drank. Essentially, I took what I learned about visualising the share of electricity generation in Pennsylvania to the share of drinks consumption across the world. Thus a career was born. Fast forward 15 years and I wanted to see how that electricity generation had changed. And I can do that because I used a public source in the US Energy Information Administration.
Anecdotally, Pennsylvanians know fracking for natural gas has been a boon to the former coal and steel parts of the Commonwealth, which really is a lifeline. But overall, Pennsylvania has long been known as a nuclear power state. More on that from a personal standpoint in a later post. Back in the uphill both ways to university day, I did not look at the United States overall. But now I can.
Largely this fits with the narratives I know. Coal has plummeted both in the Commonwealth and more broadly as natural gas has largely taken its place. No, that’s not great from a climate change perspective, but natural gas is definitely better than coal.
Renewables, nationally speaking, are now about 20% or 1/5th our net electricity generation. But in Pennsylvania, whilst this Monday morning might be a bright and blue sky day great for solar power, the nights are getting longer and we get a lot of clouds. We do have some hydroelectric dams—it helps to be a partially mountainous state. And, yes, we do have the wind farms along the Allegheny Ridge, one of the windiest spots along the East Coast, but for context one of the two nuclear reactors near to which I grew up is equal to almost the entire wind power electricity generation in the entire Commonwealth.
But for all the supposed growth in renewables, we just are not seeing it in Pennsylvania, at least not at a scale to supplant fossil fuels. And unfortunately, it is not as if demand is falling. And that might be why we are seeing quiet talks about reactivating some of Pennsylvania’s shuttered nuclear reactors. If you could bump that nuclear share of electric throat back up to 40% or even 50%, you could cut down that natural gas usage significantly.
Sometimes in the course of my work I stumble across graphics and work that I previously missed. In this case I was seeking a post about one of my favourite infographics, but it turned out I’ve never posted about it and so I will have to rectify that someday. However in my searching, I came upon an article from the New York Times last year where they wrote about research from MIT that compared the carbon dioxide emissions—bad for the environment and climate—per mile to the average monthly cost of a wide range of 2021 vehicles. The important distinction here is that average monthly cost is not the sticker price of a vehicle, but rather the sticker price plus lifetime operating costs. (For their analysis, the authors assumed a 15-year lifespan and 13,000 miles driven per year.)
Why is this so important? It’s pretty simple, really. In the United States, vehicle emissions are the largest source of carbon emissions. And the vast majority of that is due to passenger vehicles. If we as a society want to get serious about reducing our carbon footprint, the biggest changes we need to make are reducing our amount of driving, moving more people into mass transit, or switching out people’s gas-powered vehicles for electric vehicles.
The New York Times turned their work into a really nice static datagraphic. It is static, so there is no real interactivity if you want to compare your vehicle to others. However, the designers did choose some popular models and identified some of the key outliers.
There are nice annotations here that double their effort as a legend here.
The designers group the cars, represented by dots, into colour fields. These do a good job of showing how there is overlap between the different types of vehicles. Not all hybrid and plug-in vehicles are cheaper or even less CO2 emitting than some gas-powered vehicles, typically your smaller compacts and hatchbacks. Each colour field is linked to a textual annotation that also functions as a legend.
That alone is very helpful in understanding the differences, subtle and not-so-much, between the types of vehicles. Later on in the article the designers also used a scatter plot of a narrower set of data to compare a select set of vehicles.
Oh, there’s your Tesla.
Here we can see that one cannot simply assume that all electric vehicles are cheaper long-term than their gas-powered compatriots. Here we can see that the Nissan Altima, whilst emitting more CO2, compares favourably with the Tesla Model 3 in both the long-term cost but also in the upfront sticker price.
Despite finding this article a year and a half late, we can tie this to current events in that President Biden’s climate bill creates tax credits for electric vehicles. While the bill is perhaps not as significant as many would like, it is remarkable for still being a lot of money devoted to reducing our emissions. And when it comes to electric vehicles, one of the key components is the creation of tax credits. These would help mitigate those upfront sticker costs of electric vehicles. Because whilst they may generally be cheaper in the long-run, you still need to put up more money than their conventionally-powered alternatives either as lump sums or down payments. And with interest rates rising, what you need to cover via an auto loan will become more expensive.
Overall this is a really nice piece. Should I ever need to buy another vehicle, I would love to see this as a resource available to the general public. Unfortunately it only compares 2021 vehicles. And it does make me wonder where my 2005 vehicle compares. Probably not too terribly favourably.
Recently the United Kingdom baked in a significant heatwave. With climate change being a real thing, an extreme heat event in the summer is not terribly surprising. Also not surprisingly, the BBC posted an article about the impact of climate change.
The article itself was not about the heatwave, but rather the increasing rate of sea level rise in response to climate change. But about halfway down the article the author included this graphic.
It’s getting hotter…
As graphics go, it is not particularly fancy—a dot plot with ten points labelled. But what this piece does well is using a dot plot instead of the more common bar chart. I most typically see two types of charts when plotting “hottest days” or something similar. The first is usually a simple timeline with a dot or tick indicating when the event occurred. Second, I will sometimes see a bar chart with the hottest days presented all as bars, usually not in the proper time sequence, i.e. clustered bar next to bar next to bar.
My issue with the the latter is always where is the designer placing the bottom of the bar? When we look at the best temperature graphics, we usually refer to box plots wherein the bar is aligned to the day and then top of the bar is the daily high and the bottom of the bar the daily low. It does not make sense to plot temperatures starting at, say 0º.
In this particular case, however, the dates would appear to overlap too closely to allow a proper box plot. Though I suspect—and would be curious to see—if the daily minimum temperatures on each of those ten hottest days have also increased in temperature.
As to the timeline option, this does a better job of showing not just the increasing frequency of the hottest days, but also the rising maximum value. In the early 20th century the hottest day was 36.7ºC, and you can see a definite trend towards the hottest days nearing and finally surpassing 40ºC.
I do wonder if a benchmark line could have been added to the chart, e.g. the summertime average daily high or something similar. Or perhaps a line showing each day’s temperature faintly in the background.
Finally, I want to point out the labelling. Here the designers do a nice job of adding a white stroke or outline to the outside of the text labels. This allows the text to sit atop the y-axis lines and not have the lines interfere with the text’s legibility. That’s always a nice feature to see.
Credit for the piece goes to the BBC graphics department.
First, as we all should know, climate change is real. Now that does not mean that the temperature will always be warmer, it just means more extreme. So in winter we could have more severe cold temperatures and in hurricane season more powerful storms. But it does mean that in the summer we could have more frequent and hotter heat waves.
Enter the United States, or more specifically the North American continent. In this article from the BBC we see photographs of the way the current heatwave is playing out across the continent. But it opens up with a nice map. Well, nice as in nicely done, not as in this is actually nice weather.
Yeah, no thanks.
The only complaint most of my American readers might have is that the numbers make no sense. That’s because it’s all in Celsius. Unfortunately for Americans most of the rest of the world uses Celsius and not Fahrenheit. Suffice it to say you don’t want to be in the dark reds. 44C equals 111F. 10C, the greenish-yellow side of the spectrum, is a quite pleasant 50F.
And that can relate to a small housekeeping note. I’m back after a long weekend up in the Berkshires. I took a short holiday to go visit the area near that north–south band of yellow over the eastern portion of the United States. It was very cool and windy and overall a welcome respite from the heat that will be building back in here across the eastern United States later this week.
At least yesterday was the summer solstice. The days start getting shorter. And in about five weeks or so we will reach the daily average peak temperature here in Philadelphia. At that point the temperatures begin cooling towards their eventual mid-January nadir.
I can’t wait.
Credit for the piece goes to the BBC graphics department.
The National Oceanic and Atmospheric Administration (NOAA) released its 2022 report, Sea Level Rise Technical Report, that details projected changes to sea level over the next 30 years. Spoiler alert: it’s not good news for the coasts. In essence the sea level rise we’ve seen over the past 100 years, about a foot on average, we will witness in just thirty years to 2050.
Now I’ve spent a good chunk of my life “down the shore” as we say in the Philadelphia dialect and those shore towns will all have a special place in my life. But that looks more to be like a cherished memory fading into time. I took a screenshot of the Philadelphia region and South Jersey in particular.
Not just the Shore, but also the Beaches
To be fair, that big blob of blue is Delaware Bay. That’s already the inlet to the Atlantic. But the parts that ought to disturb people are just how much blue snakes into New Jersey and Delaware, how much/little space there is between those very small ribbons of land land off the Jersey coast.
You can also see little blue dots. When the user clicks on those, the application presents the user with a small interactive popup that models sea level rise on a representative photograph. In this case, the dot nearest to my heart is that of the Avalon Dunes, with which I’m very familiar. As the sea level rises, more and more of the street behind protected by the dunes disappears.
My only real issue with the application is how long it takes to load and refresh the images every single time you adjust the zoom or change your focus. I had a number of additional screenshots I wanted to take, but frankly the application was taking too long to load the data. That could be down to a million things, true, but it frustrated me nonetheless.
Regardless of my frustration, I do highly recommend you check out the application, especially if you have any connection to the coast.
Last month the Washington Post published a nice article that detailed the deep water cooling system that the city of Toronto, Canada uses to keep itself cool. For the unfamiliar, deep water cooling at its simplest means sucking up very cold water from the bottom of a lake or ocean or wherever you can get very cold water, and then pumping that inland to absorb heat before cycling it back.
Of course, for the longer explanation—and what makes Toronto’s system different—you should read the article. And for our purposes it includes some nice illustrations that diagram just how that system works. The screenshot below captures the basic process I just described, but there are additional illustrations that do a great job showing just how the system works.
Just look at those gloriously cool temperatures…
What I particularly enjoy about this style is how the illustrations of the building and similar are minimal and restrained. This allows the diagrammatic elements to come to the forefront, which is important to make the system understood.
Winter is coming? Winter is here. At least meteorologically speaking, because winter in that definition lasts from December through February. But winters in Philadelphia can be a bit scattershot in terms of their weather. Yesterday the temperature hit 19ºC before a cold front passed through and knocked the overnight low down to 2ºC. A warm autumn or spring day to just above freezing in the span of a few hours.
But when we look more broadly, we can see that winters range just that much as well. And look the Philadelphia Inquirerdid. Their article this morning looked at historical temperatures and snowfall and whilst I won’t share all the graphics, it used a number of dot plots to highlight the temperature ranges both in winter and yearly.
Yep, I still prefer winter to summer.
The screenshot above focuses attention on the range in January and July and you can see how the range between the minimum and maximum is greater in the winter than in the summer. Philadelphia may have days with summer temperatures in the winter, but we don’t have winter temperatures in summer. And I say that’s unfair. But c’est la vie.
Design wise there are a couple of things going on here that we should mention. The most obvious is the blue background. I don’t love it. Presently the blue dots that represent colder temperatures begin to recede into and blend into the background, especially around that 50ºF mark. If the background were white or even a light grey, we would be able to clearly see the full range of the temperatures without the optical illusion of a separation that occurs in those January temperature observations.
Less visible here is the snowfall. If you look just above the red dots representing the range of July temperatures, you can see a little white dot near the top of the screenshot. The article has a snowfall effect with little white dots “falling” down the page. I understand how the snowfall fits with the story about winter in Philadelphia. Whilst the snowfall is light enough to not be too distracting, I personally feel it’s a bit too cute for a piece that is data-driven.
The snowfall is also an odd choice because, as the article points out, Philadelphia winters do feature snowfall, but that on days when precipitation falls, snow accounts for less than 1/3 of those days with rain and wintry mixes accounting for the vast majority.
Overall, I really like the piece as it dives into the meteorological data and tries to accurately paint a portrait of winters in Philadelphia.
And of course the article points out that the trend is pointing to even warmer winters due to climate change.
Credit for the piece goes to Aseem Shukla and Sam Morris.
If you didn’t know, climate change is real and it threatens much of our current way of life. I don’t go so far as to say it threatens the extinction of mankind, because there are nearly seven billion of us and to wipe out every living soul would be a tall order. But, it could wipe out parts of our history.
If you didn’t know, the city of Washington in the District of Columbia was built on a swamp. Except, actually, it wasn’t. Most of the city was built on higher ground along the riverbank of the Potomac. True, there are low-lying areas affected by the tides and high water, such as the National Mall, but places like the Capitol were purposefully placed on high ground.
And that gets us to this article in the Washington Post. It takes a look at the impact of rising waters and flash flooding on the National Mall, home to some of the preeminent American museums. The article uses a map to show just how the museums are threatened by extreme weather events that will only increase in frequency as climate change ramps up.
Note the Capitol and the White House will both be fine.
The designer used colour to denote museums by their risk of flooding, and sadly there are several. But as the article describes, there are few short-term fixes that we can undertake to mitigate the risk of damage to the collections.
We’re back and there’s a lot to touch on this week. But first, as a prelude to some of the Hurricane Ida coverage, I wanted to briefly point our attention to an article in the Philadelphia Inquirer from about two or three weeks before Ida struck.
The article focused on the US Army Corps of Engineers proposal to protect the back bay areas of the South Jersey shore, i.e. the areas between the outer barrier islands and the mainland. The article chose a few graphics from the report to draw attention to some of the proposed solutions, e.g. massive gates, new levee systems, and wetland restoration.
I wanted to focus on a different graphic in the report. This functioned more as an illustrated guide to the whole suite of solutions available to mitigating flood and storm surge disasters. Because, in the future, rising sea levels will threaten coastal communities. And as we saw just last week here in the Northeast, warmer seas plus warmer skies increase the potential for storms with crippling deluges.
Image links to the report, not the article
The graphic shows how we can try to deal with surge waters from out beyond the barrier islands through to the back bay to communities inland both by protecting, adapting, and in some cases relocating.
All need to be on the table, because if last week showed us anything—not that many hadn’t been saying this for decades—it’s not just the bayous of New Orleans and Florida’s beaches that are at risk from environments and weather patterns altered by a changing climate, but even those areas more local (to the Northeast).
Credit for the piece goes to the US Army Corps of Engineers.