Mapping the Mullica Hill Tornado

When the remnants of Hurricane Ida rolled through the Northeast two weeks ago, here in the Philadelphia region we saw catastrophic flooding from deluges west of the city and to the east we had a tornado outbreak in South Jersey. At a simplistic level we can attribute the differences in outcomes to the path of the storm. As Ida was no longer a hurricane she developed what we call warm and cold sectors along the frontal boundary. Long story short, we can see different types of weather in these setups with heavy rain in the cold and severe weather in the warm. And that’s what we saw with Ida: heavy, flood-causing rains in the cold sector north and west of Philadelphia and then severe weather, tornadoes, in the warm sector south and east of the city.

But I want to talk about the tornadoes, and one in particular: an EF3 tornado that struck the South Jersey town of Mullica Hill. EF3 refers to the enhanced Fujita scale that describes the severity of tornadoes. EF1s are minor and EF5s are the worst. The Philadelphia region has in the past rarely seen tornadoes, but even moderate strength ones such as an EF3 are almost unheard of in the area.

This tornado caused significant damage to the area, but was also remarkable because it persisted for 12 miles. Most tornadoes dissipate in a fraction of that length. The Mount Holly office of the National Weather Service (NWS) produced a few graphics detailing tornadoes Ida spawned. You can see from the timeline graphic that the Mullica Hill tornado was particularly long lasting in time as well as distance travelled, surviving for twenty minutes.

To briefly touch on the design of this graphic, I think it generally works well. I’m not certain if the drop shadow adds anything to the graphic and I might have used a lighter colour text label for the times as they fight with the graphical components for visual primacy. Secondly, I’m not certain that each tornado needs to be in a different colour. The horizontal rules keep each storm visually separate. Colour could have instead been used to indicate perhaps peak severity for each tornado or perhaps at specific moments in the tornadoes’ lives. But overall, I like this graphic.

NWS Mt Holly also produced a graphic specifically about the tornado detailing its path.

Here we have a graphic incorporating what looks like Google Earth or Google Maps imagery of the area and an orange line denoting the path. At various points faint text labels indicate the strength of the tornado along its path. A table to the left provides the key points.

From a graphical standpoint, I think this could use a bit more work. The orange line looks too similar to the yellow roads on the map and at a quick glance may be too indistinguishable. Compare this approach to that of the Philadelphia Inquirer in its writeup.

Here we have a map with desaturated colours with a bright red line that clearly sets itself apart from the map. I think a similar approach would have benefitted the NWS graphic. Although the NWS graphic does have a stroke weight that varies depending upon the path of the tornado.

I also have a graphic made by a guy I know who lives in the area. He took that maximum tornado width of 400 yards and used screenshots of Google Maps in combination with his own direct evidence and photos and videos from his neighbours and their social media posts to try and plot the tornado’s path more granularly. Each red mark represents storm damage and a width of 400 yards.

I’m not going to critique this graphic because he made it more for himself to try and understand how close he was to the storm. In other words, it wasn’t meant to be published. But I’m thankful he allowed me to share it with you. But even here you can see he chose a colour that contrasted strongly with the background satellite views.

All of this just goes to show you the path and devastation one tornado caused. And that one tornado was just a fraction of the devastation Ida wrought upon the Northeast let alone the rest of the United States.

The Western Heat Dome(s)

For the last two days Philadelphia and much of the East Coast suffered from a heavy haze of smoke that blanketed the region. This wasn’t just any smoke, however, but smoke from the wildfires on the West Coast. This post isn’t about the wildfires, but rather something that exacerbated them. We are talking about the heat domes that formed earlier this summer. The ones that melted trolley cables in Portland.

This was a nice print graphic in the Guardian Weekly, a magazine to such I subscribe that had several articles about the domes.

Missing that cold, cold Canadian air

It does a nice job of showing the main components of the story and sufficiently simplifying them to make them digestible. One quibble, however, is how in the second map how oddly specific the heat dome is depicted.

The first graphic in particular is more of an abstraction and simplified illustration. But here we have contours and shapes that seem to speak with precision about the location of this heat dome. It also contains shades of red that presumably indicate the severity of the heat.

There’s nothing wrong with that, but it stuck me as odd juxtaposed against the top illustration.

Credit for the piece goes to the Guardian Weekly graphics department.

Texas-scale Cold

The middle third of the United States sits under some pretty cold Arctic air, helping to bring frozen precipitation, i.e. snow, to places unfamiliar with it, most notably Texas. I say unfamiliar, but Texas is also negligently unprepared. There are photos circulating the internet of Texarkana, a city straddling the Texas–Arkansas border, of the Arkansas side plowed and safe for travel whilst the Texas side…is not. You also have a deregulated and privatised energy grid, which has seen wholesale prices spike to $9,000 per megawatt hour. (Some companies in the Texan market charge wholesale rates to their customers, so I wouldn’t be surprised to see stories coming out in the next few weeks of excessively large electric bills.)

What’s driving this Texas-scale cold? Why is Arctic air over Dallas? In years past you’ve probably heard the term “polar vortex”. The super simple version is that really cold air spins in a tight upper-atmosphere vortex over the pole, hence the name. But when the vortex weakens, say due to warmer air, it becomes a bit more unstable. When it becomes unstable, a chunk of it might break off and descend south. It doesn’t always descend over continental North America, but when it does… well, since the mid 2010s we’ve been calling it the polar vortex. Keep in mind, that it’s not, it’s a part of an upper-level low whose cold air eventually falls to the surface, but despite my protestations, the name has stuck.

Anyway, it means we presently are witnessing some frigid temperatures across the US and this graphic from the National Weather Service (NWS) highlights just how extreme those temperatures are.

The distance is no surprise here, because in winter one would expect Minneapolis and Miami to exhibit extreme temperature differences. But it’s the scale of this difference that is so dramatic.

I could probably do a whole piece—or several—about the design of NWS graphics, but I’ll just point out that I’d probably lighten the black lines working as state/provincial borders. And while their colours are standardised, I wonder if making a clearer distinction between freezing and above freezing (32ºF in this map) would make some more sense.

Credit for the piece goes to the NWS.

Double Your Hurricanes, Double Your Fun

In a first, the Gulf of Mexico basin has two active hurricanes simultaneously. Unfortunately, they are both likely to strikes somewhere along the Louisiana coastline within approximately 36 hours of each other. Fortunately, neither is strong as a storm named Katrina that caused a mess of things several years ago now.

Over the last few weeks I have been trying to start the week with my Covid datagraphics, but I figured we could skip those today and instead run with this piece from the Washington Post. It tracks the forecast path and forecast impact of tropical storm force winds for both storms.

The forecast path above is straight forward. The dotted line represents the forecast path. The coloured area represents the probability of that area receiving tropical storm force winds. Unsurprisingly the present locations of both storms have the greatest possibilities.

Now compare that to the standard National Weather Service graphic, below. They produce one per storm and I cannot find one of the combined threat. So I chose Laura, the one likely to strike mid-week and not the one likely to strike later today.

The first and most notable difference here is the use of colour. The ocean here is represented in blue compared to the colourless water of the Post version. The colour draws attention to the bodies of water, when the attention should be more focused on the forecast path of the storm. But, since there needs to be a clear delineation between land and water, the Post uses a light grey to ground the user in the map (pun intended).

The biggest difference is what the coloured forecast areas mean. In the Post’s versions, it is the probability of tropical force winds. But, in the National Weather Service version, the white area actually is the “cone”, or the envelope or range of potential forecast paths. The Post shows one forecast path, but the NWS shows the full range and so for Laura that means really anywhere from central Louisiana to eastern Texas. A storm that impacts eastern Texas, for example, could have tropical storm force winds far from the centre and into the Galveston area.

Of course every year the discussion is about how people misinterpret the NWS version as the cone of impact, when that is so clearly not the case. But then we see the Post version and it might reinforce that misconception. Though, it’s also not the Post’s responsibility to make the NWS graphic clearer. The Post clearly prioritised displaying a single forecast track instead of a range along with the areas of probabilities for tropical storm force winds.

I would personally prefer a hybrid sort of approach.

But I also wanted to touch briefly on a separate graphic in the Post version, the forecast arrival times.

This projects when tropical storm force winds will begin to impact particular areas. Notably, the areas of probability of tropical storm force winds does not change. Instead the dotted line projections for the paths of the storms are replaced by lines relatively perpendicular to those paths. These lines show when the tropical storm winds are forecast to begin. It’s also another updated design of the National Weather Service offering below.

Again, we only see one storm per graphic here and this is only for Laura, not Marco. But this also probably most analogous to what we see in the Post version. Here, the black outline represents the light pink area on the Post map, the area with at least a 5% forecast to receive tropical storm force winds. The NWS version, however, does not provide any further forecast probabilities.

The Post’s version is also design improved, as the blue, while not as dark the heavy black lines, still draws unnecessary attention to itself. Would even a very pale blue be an improvement? Almost certainly.

In one sense, I prefer the Post’s version. It’s more direct, and the information presented is more clearly presented. But, I find it severely lack in one key detail: the forecast cone. Even yesterday, the forecast cone had Laura moving in a range both north and south of the island of Cuba from its position west of Puerto Rico. 24 hours later, we now know it’s on the southern track and that has massive impact on future forecast tracks.

Being east of west of landfall can mean dramatically different impacts in terms of winds, storm surge, and rainfall. And the Post’s version, while clear about one forecast track, obscures the very real possibilities the range of impacts can shift dramatically in just the course of one day.

I think the Post does a better job of the tropical storm force wind forecast probabilities. In an ideal world, they would take that approach to the forecast paths. Maybe not showing the full spaghetti-like approach of all the storm models, but a percentage likelihood of the storm taking one particular track over another.

Credit for the Post pieces goes to the Washington Post graphics department.

Credit for the National Weather Service graphics goes to the National Weather Service.

Wicked Hot Islands

Though the temperatures might not always feel it, at least in Philadelphia, summer is ending and autumn beginning. Consequently I wanted to share this neat little work that explores urban heat islands. Specifically, this post’s author looks at Massachusetts and starts with a screenshot of the Boston area.

Wicked hot
Wicked hot

The author points out that the Boston Common and Public Garden are two areas of cool in an otherwise hot Boston. He also points out the Charles River and the divide between Boston and Brookline. I would like to add to it and point out the Fens and the Emerald Necklace.

I wonder if a scale of sorts would help, though the shift from warm yellows and reds to cooler greens and blues certainly helps differentiate between the cooler and warmer areas.

Credit for the piece goes to Krishna Karra.

The Map

I mean come on, guys, did you really expect me to not touch this one?

Well we made it to Friday, and naturally in the not so serious we have to cover the sharpie map. Because, if the data does not agree with your opinions, clearly the correct response is to just make shit up.

By now you have probably all heard the story about how President Trump tweeted an incorrect forecast about the path of Hurricane Dorian, warning how Alabama could be “hit (much) harder than anticipated”. Except that the forecast at the time was that Alabama wasn’t going to be hit. Cue this map, days later. As in days. As in this news story continued for days.

Note the sharpie weirdly extending the cone (in black, not the usual white) into Florida and onward into Alabama.
Note the sharpie weirdly extending the cone (in black, not the usual white) into Florida and onward into Alabama.

So to be fair, I went to the NOAA website and pulled down from their archive the cone maps from the date of the graphic Trump edited, and the one from the day when he tweeted about Alabama being hit by the hurricane.

Important to note that this forecast dates from 29 August. This press conference was on 4 September. He tweeted on 1 September. So in other words, two days after he used the wrong forecast, he had printed a big version of a contemporaneously two-day old forecast to show that if he drew a sharpie line on it, it would be correct.

Here is the original, from the National Hurricane Centre, for 29 August. Note, no Alabama.

No Alabama in this forecast, the OG, if you will (and if I'm using that term correctly).
No Alabama in this forecast, the OG, if you will (and if I’m using that term correctly).

And then Trump tweeted on 1 September. So let’s take the 02.00 Eastern time 1 September forecast from NOAA.

By 30 August the forecast was already tracking northward, not westward. So by 1 September the idea that the hurricane would hit Alabama was just nonsense.
By 30 August the forecast was already tracking northward, not westward. So by 1 September the idea that the hurricane would hit Alabama was just nonsense.

Definitely no Alabama in that forecast.

This could have all gone away if he had just admitted he looked at the wrong forecast and tweeted an incorrect warning. Instead, we had the White House pressuring NOAA to “fix” their tweet.

Now we can all chalk  this up as funny. But it does have some serious consequences. Instead of people in the actual path of Dorian preparing, because of the falsely wide range of impacts the president suggested, people in Alabama needlessly prepared for a nonevent.

But more widely, as someone who works with data on a daily basis, we need to agree that data is real. We cannot simply change the data because it does not fit the story we want to tell. If I could take a screenshot of every forecast and string them together in an animated clip, you would see there was never any forecast like the sharpie forecast. We cannot simply create our own realities and choose to live within them, because that means we have no common basis on which to disagree policy decisions that will have real world impacts.

Credit for the photo goes to Evan Vucci of the AP.

Credit for the National Hurricane Centre maps goes to its graphic team.

We’re All Just Palm Trees and Patio Furniture in the Wind

For all my American readers, I hope you all enjoyed their Labour Day holiday. For the rest of you, today is just a Tuesday. Unless you live in the Bahamas, then today is just another nightmarish day as Hurricane Dorian continues his assault on the islands.

The storm will be one for the record books when all is said and done, and not just because of the damage likely to be catastrophic when people can finally emerge and examine what remains. The storm, by several metrics, is one of the most powerful in the Atlantic since we started recording data on hurricanes. If we look at pressure and sustained wind speeds, i.e. not wind gusts, Sam Lillo has plotted the path of Dorian through those metrics and found it sitting scarily in the lower-right corner of this plot.

How low can it go? Probably not much, thankfully.
How low can it go? Probably not much, thankfully.

The graphic does a couple of nice things here. I like the use of colour to indicate the total number of observations in that area. Clearly, we see a lot more of the weaker, higher pressure storms. Hence the dark blue in the upper-left. But then against that we have the star of the graphic, and my favourite part of the plot: the plot over time of Dorian’s progress and intensification as a storm. The final green dot indicates the point of the last observation when the graphic was made.

Overall this is a simple and solid piece that shows in the available historical context just how powerful Dorian is. Unfortunately that correlates with likely heavy damage to the Bahamas.

Credit for the piece I presume goes to Sam Lillo, though with the Twitter one can never be entirely certain.

Baby, It’ Hot Outside Pt 2

Yesterday we looked at Billy Penn’s graphics about the cooler stations and I mentioned a few ways the graphic could be improved. So last night I created a graphic where I explored the limited scope of the data, but also showing how low the temperatures were, relative to the air temperature outside, using weather data from the National Weather Service, admittedly from Philadelphia International Airport, not quite Centre City, which I would expect to be warmer due to the urban heat bubble effect.

I'd be curious to see data for North Philly
I’d be curious to see data for North Philly

I opted to exclude the Patco Line since the original dataset did not include it either. However a section of it does run through Centre City and could be relevant.

Credit for the piece goes to me, though the data is all from Billy Penn and the National Weather Service.

Baby, It’s Hot Outside

Those of you living on the East Coast, specifically the Mid-Atlantic, know that presently the weather is quite warm outside. As in levels of dangerous heat and humidity. Personally, your author has not left his flat in a few days now because it is so bad.

Alas, not everyone has access to air conditioning in his or her abode. Consequently, they need to look to public spaces with air conditioning. Usually that means libraries or public buildings. But here in Philadelphia, have people considered the subway?

Billy Penn investigated the temperatures in Philadelphia’s subsurface stations along the Broad Street and Market–Frankford Lines—Philadelphia’s third and oft-forgot line, the Patco, was untested. What they found is that temperatures in the stations were significantly below the temperatures above ground. The Market–Frankford stations, for example, were less than 100ºF.

Just explore the rails…
Just explore the rails…

Of course that misses the 2nd Street station in Old City, but otherwise picks up all the Market–Frankford stations situated underground.

Then there is the Broad Street Line.

More rail riding…
More rail riding…

Here, I do have a question about why the line wasn’t investigated from north to south. It ran only as far north as Girard, stopping well short of north Philadelphia neighbourhoods, and then as far south as Snyder, missing both Oregon and Pattison (sorry, corporately branded AT&T) stations. The robustness of the dataset is a bit worrying.

The colours here too mean nothing. Instead blue is used for the blue-coloured Market–Frankford line and orange for the orange-coloured Broad Street line. (The Patco line would have been red.) Here was a missed opportunity to encode temperature data along the route.

Finally, if the sidewalk temperatures were measured at each station, I would want to see that data alongside and perhaps run some comparisons.

This is an interesting story, but some more exploration and visualisation of the data could have taken it to the next level.

Credit for the piece goes to Danya Henninger.

Tornado Alley Spread East

Last week the Philadelphia area experienced a mini tornado outbreak with three straight days of watches and warnings. Of course further west in the traditional Tornado Alley, far more storms of far greater intensity were wreaking havoc. But with tornado warnings going off every few minutes just outside the city of Philadelphia, it was hard to concentrate on storms in, say, Oklahoma.

But the New York Times did. And they put together a nice graphic showing the timeline of the outbreak using small multiples to show where the tornado reports were located on 12 consecutive days.

Who remembers the film Twister?
Who remembers the film Twister?

Of course the day of that publication, 29 May, would see another few dozen, even in and around Philadelphia. Consequently, the graphic could have been extended to a day 13. But that would have been rather unlucky.

From a design standpoint, the really nice element of this graphic is that it works so well in black and white. The graphic serves as a reminder that good graphics need not be super colourful and flashy to have impact.

Credit for the piece goes to Weiyi Cai and Jason Kao.