Where’s the Axis

We’re starting this week with an article from the Philadelphia Inquirer. It looks at the increasing number of guns confiscated by the Transportation Security Administration (TSA) at Philadelphia International Airport. Now while this is a problem we could discuss, one of the graphics therein has a problem that we’ll discuss here.

We have a pretty standard bar chart here, with the number of guns “detected” at all US airports from 2008 through 2021. The previous year is highlighted with a darker shade of blue. But what’s missing?

We have two light grey lines running across the graphic. But what do they represent? We do have the individual data points labelled above each bar, and that gives us a clue that the grey lines are axis lines, specifically representing 2,000 and 4,000 guns, because they run between the bars straddling those two lines.

However, we also have the data labels themselves. I wonder, however, are they even necessary? If we look at the amount of space taken up by the labels, we can imagine that three labels, 2k, 4k, and 6k, would use significantly less visual real estate than the individual labels. The data contained in the labels could be relegated to a mouseover state, revealed only when the user interacts directly with the graphic. Here it serves as a “sparkle”, distracting from the visual relationships of the bars.

If the actual data values to the single digit are important, a table would be a better format for displaying the information. A chart should show the visual relationship. Now, perhaps the Inquirer decided to display data labels and no axis for all charts. I may disagree with that, but it’s a house data visualisation stylistic choice.

But then we have the above screenshot. In this bar chart, we have something similar. Bars represent the number of guns detected specifically at Philadelphia International Airport, although the time framer is narrower being only 2017–2021. We do have grey lines in the background, but now on the left of the chart, we have numbers. Here we do have axis labels displaying 10, 20, and 30. Interestingly, the maximum value in the data set is 39 guns detected last year, but the chart does not include an axis line at 40 guns, which would make sense given the increments used.

At the end of the day, this is just a frustrating series of graphics. Whilst I do not understand the use of the data labels, the inconsistency with the data labels within one article is maddening.

Credit for the piece goes to John Duchneskie.

Be Ambitious

Well it’s Friday. Congratulations on making it to the weekend. I often spend my weekends working on personal projects, because I have goals and things I’m trying to do. In other words, I have ambitions. That’s why this piece from Indexed was so funny. One cannot go wrong with a Venn diagram.

Credit for the piece goes to Jessica Hagy.

Regal Birthplaces

Earlier this week marked the 70th anniversary of Queen Elizabeth’s accession to the throne of the United Kingdom and many Commonwealth realms. There are many graphics about the length of her reign and the numerous prime ministers and presidents she has met over the years. But I actually enjoyed this article from the BBC as it dovetails nicely with my interest in genealogy, which frequently looks at the same sort of materials.

In genealogy we often want to find photos, illustrations, or really any kind of documentation that ties an ancestor to a particular place at a particular time. What I never realised is that the birthplace of Her Majesty, the Queen, no longer exists.

It kind of makes sense, however, when you consider that as the daughter of the younger son she was never expected to take the throne. When her uncle abdicated, however, her father took the throne and then she became next in line and we all know the rest. But because of that lack of expectation her birthplace was just another London townhome. The article details how development changed the location, not the Blitz as is often thought.

You can see from the screenshot above how the article uses a slider device to compare the neighbourhood in London today vs. what it was in 1895, about 30 years before the Queen’s birth.

At this point we’re all familiar with sliders, but they do work really well when it comes to this kind of before-after comparison.

Credit for the piece goes to the BBC graphics department.

Let There Be Light

In several decades…

Just a quick little piece today, a neat illustration from the BBC that shows how the process of nuclear fusion works. The graphic supports an article detailing a significant breakthrough in the development of nuclear fusion. Long story short, a smaller sort-of prototype successfully proved the design underpinning a much larger fusion reactor currently under construction in France. We are potentially on our way to proving the viability of nuclear fusion as an energy source.

Why is that important? Well, first of all, no carbon emissions. Nuclear fusion powers the Sun, where hydrogen is fused with hydrogen to produce helium and in the process release an enormous amount of energy. Mankind wants to take that energy and use it to heat water to generate steam to spin turbines to create electricity.

And we use a lot of electricity.

So how does fusion work?

The BBC graphic shows how. This is a bit simplified, even for my tastes, but it’s generally pretty good. For example, I probably would have labelled protons and neutrons earlier (to the left) of the graphic. And my big question mark is about the widths of the arrows, because if the width of the arrows relates to the scale of the energy, as that is the crux of the matter. (See what I did there?)

Basically when we want to generate energy we want to add as little as possible to start a reaction to net as much output as possible. A little bit of energy is used to split a uranium isotope and that generates a tremendous amount of energy. Thus far with nuclear fusion, however, we use a lot of energy to fuse hydrogen into helium and get little back as output. In other words, a net loss.

The graphic omits how this reactor in the UK works, by using a doughnut-shaped vessel to contain the hydrogen reaction. To do this they use superconducting magnets to generate powerful electromagnetic fields. This contains the hydrogen that turns into a superheated plasma. After all, it’s not like there are any materials known to man that can safely contain the temperatures of the Sun. But we have evidence that as the amount of plasma scale up, the closer we get to breaking even. And that’s the goal for the French reactor.

The other big question in the room is how this helps us with climate change, because as I stated up top, no carbon emissions. Unfortunately, not much. The French reactor is still several years away from being complete. And if that works as expected, commercial-scale reactors powering electricity generation stations are many more years away. Fusion will help power us into the 22nd century. And so we will still need nuclear fission and renewables to get us through the 21st.

Credit for the piece goes to the BBC graphics department.

Can You Hit the High Notes?

This is an older piece that I stumbled across doing some other work. I felt like it needed sharing. The interactive graphic shows the high and low note vocal ranges of major musical artists.

Good to see some of my favourite artists in the mix.

Interactive controls allow the user to sort the bars by the greatest vocal range, high notes, or low notes. Colour coding distinguishes male from female vocalists.

In particular I enjoy the bottom of the piece that uses the keyboard to show the range of notes. When the user mouses over a particular singer, the ends of the range display the particular song in which the singer hit the note.

Again, this is an older piece that I just discovered, but I did enjoy it. I would be curious to see how these things could change over time. As an artist ages, how does that change his or her vocal range? Are there differences between albums? This could be a fascinating point at which branching out for further research could be done.

Credit for the piece goes to ConcertHotels.com

Dots Beat Bars

Today is just a quick little follow-up to my post from Monday. There I talked about how a Boston Globe piece using three-dimensional columns to show snowfall amounts in last weekend’s blizzard failed to clearly communicate the data. Then I showed a map from the National Weather Service (NWS) that showed the snowfall ranges over an entire area.

Well scrolling through the weather feeds on the Twitter yesterday I saw this graphic from the NWS that comes closer to the Globe‘s original intent, but again offers a far clearer view of the data.

Much better

Whilst we miss individual reports being depicted as exact, that is to say the reports are grouped into bins and assigned a colour, we have a much more granular view than we did with the first NWS graphic I shared.

The only comment I have on this graphic is that I would probably drop the terrain element of the map. The dots work well when placed atop the white map, but the lighter blues and yellows fade out of view when placed atop the green.

But overall, this is a much clearer view of the storm’s snowfall.

Credit for the piece goes to the National Weather Service graphics department.

How Accurate Is Punxsutawney Phil?

For those unfamiliar with Groundhog Day—the event, not the film, because as it happens your author has never seen the film—since 1887 in the town of Punxsutawney, Pennsylvania (60 miles east-northeast of Pittsburgh) a groundhog named Phil has risen from his slumber, climbed out of his burrow, and went to see if he could see his shadow. Phil prognosticates upon the continuance of winter—whether we receive six more weeks of winter or an early spring—based upon the appearance of his shadow.

But as any meteorological fan will tell you, a groundhog’s shadow does not exactly compete with the latest computer modelling running on servers and supercomputers. And so we are left with the all important question: how accurate is Phil?

Thankfully the National Oceanic and Atmospheric Administration (NOAA) published an article several years ago that they continue to update. And their latest update includes 2021 data.

Not exactly an accurate depiction of Phil.

I am loathe to be super critical of this piece, because, again, relying upon a groundhog for long-term weather forecasting is…for the birds (the best I could do). But critiques of information design is largely what this blog is for.

Conceptually, dividing up the piece between a long-term, i.e. since 1887, and a shorter-term, i.e. since 2012, makes sense. The long-term focuses more on how Phil split out his forecasts—clearly Phil likes winter. I dislike the use of the dark blue here for the years for which we have no forecast data. I would have opted for a neutral colour, say grey, or something that is visibly less impactful than the two light colours (blue and yellow) that represent winter and spring.

Whilst I don’t love the icons used in the pie chart, they do make sense because the designers repeat them within the table. If they’re selling the icon use, I’ll buy it. That said, I wonder if using those icons more purposefully could have been more impactful? What would have happened if they had used a timeline and each year was represented by an icon of a snowflake or a sun? What about if we simply had icons grouped in blocks of ten or twenty?

The table I actually enjoy. I would tweak some of the design elements, for example the green check marks almost fade into the light blue sky. A darker green would have worked well there. But, conceptually this makes a lot of sense. Run each prognostication and compare it with temperature deviation for February and March (as a proxy for “winter” or “spring”) and then assess whether Phil was correct.

I would like to know more about what a slightly above or below measurement means compared to above or below. And I would like to know more about the impact of climate change upon these measurements. For example, was Phil’s accuracy higher in the first half of the 20th century? The end of the 19th?

Finally, the overall article makes a point about how difficult it would be for a single groundhog in western Pennsylvania to determine weather for the entire United States let alone its various regions. But what about Pennsylvania? Northern Appalachia? I would be curious about a more regionally-specific analysis of Phil’s prognostication prowess.

Credit for the piece goes to the NOAA graphics department.

America’s Crime Problem

During the pandemic, media reports of the rise of crime have inundated American households. Violent crimes, we are told, are at record highs. One wonders if society is on the verge of collapse.

But last night a few friends asked me to take a look at the data during the pandemic (2020–2021) and see what is actually going on out on the streets in a few big cities. Naturally I agreed and that’s why we have this post today. The first thing to understand, however, is that we do not have a federal-level database where we can cross compare crimes in cities using standardised definitions. The FBI used to produce such a thing, but in 2020 retired it in favour of a new system that, for reasons, local and state agencies have yet to fully embrace. Consequently, just when we need some real data, we have a notable lack of it.

At the very least we have national-level reporting on violent crimes and homicides, the latter of which is a subset of violent crimes. Though these reports are also dependent on local and state agencies self-reporting to the FBI. I also wanted to look at not just whether crime is up of late, but is crime up over the last several years. I chose to go back 30 years, or a generation.

We can see one important trend here, that at a national level violent crimes are largely stable at rate of 400 per 100,000 people. Homicides, however, have climbed by nearly a third. Violent crimes are not rising, but murders are.

My initial charge was to look at cities and violent crime. However, knowing that nationally violent crimes are largely stable, the issue of concern would be how the rise in murders is playing out on American city streets. With the caveat that we do not have a single database to review, I pulled data directly from the five cities of interest: Philadelphia, Chicago, New York, Washington, and Detroit.

I also considered that large cities will have more murders simply by dint of their larger populations. And so when I collected the data, I also tried to find the Census Bureau’s population estimates of the cities during the same time frame. Unfortunately the 2021 estimates are not yet available so I had to use the 2020 population estimates for my 2021 calculations.

First we can see that not all cities report data for the same time period. And for Detroit in particular that makes comparisons tricky. In fact only New York had data back to the beginning of the century. Regardless of the data set’s less than full robustness we can see that in all five cities homicides rose in 2020 and 2021.

Second, however, if squint through that lack of full data, we see a trend at the city level that aligns with the national level. Homicides, tragically, are indeed up. However, in New York and Washington homicides are still below the data from near 2000 and at that time homicides already appear on a downward trajectory. I would bet that homicides were even higher during the 1990s and that the 2000s represented a long-run decline. In other words, whilst homicides are up, they are still below their peaks. A worrying trend, but far from the sky is falling.

That cannot quite be said for other cities. Let’s start with Detroit. Sadly we have too few years of data to draw any conclusion other than that homicides rose compared to the years preceding the pandemic.

That leaves us with Philadelphia and Chicago. Philadelphia has less data available and it’s harder to make a determination of what is happening. But we can say that since 2007, homicides have not been higher. If you look closely though, you can see how there does appear to be a downward trend at the beginning of the line. We do not have enough data like we do with New York and Washington, but I would bet homicides are up in Philadelphia, but still far short of what they were in the 1990s.

Chicago is the oddball. Yes, it saw a peak in homicides during the pandemic. But in 2016 the city didn’t miss the pandemic peak by much. In other words, homicides were staggeringly high in Chicago before the pandemic. If anything, we see a failure to combat high crime rates. But even before that spike in 2016, we see more of a valley floor in homicides. True, at the beginning of the century homicides appear to have trended down. But unlike the other cities here, homicides bottomed out at around 450 per 100,000 people. I’m not so certain we had a persistent, long-run decline in Chicago with which to start.

And like I said above, larger populations we would expect to have more murders because more potential criminals and victims. When we equalise for population we see the same trends as we expect—the city populations have been relatively stable over the last 20 years. Instead what we see is that relative to each other murders are more common in some cities and less so in others.

New York is a great example with nearly 500 murders last year, a number on par with Philadelphia. But New York has over 8 million inhabitants. Philadelphia has just 1.6. Consequently New York’s homicide rate is a surprisingly low 5.9 per 100,000 people. Philadelphia’s on the other hand? 35.6.

Philadelphia is near the top of that list, with Washington and Chicago having similar, albeit lower, rates at 31.7 and 30.1, respectively. But sadly Detroit surpasses them all and is in league of its own: 47.5 in 2021.

Credit for the pieces is mine.

Obfuscating Bars

On Friday, I mentioned in brief that the East Coast was preparing for a storm. One of the cities the storm impacted was Boston and naturally the Boston Globe covered the story. One aspect the paper covered? The snowfall amounts. They did so like this:

All the lack of information

This graphic fails to communicate the breadth and literal depth of the snow. We have two big reasons for that and they are both tied to perspective.

First we have a simple one: bars hiding other bars. I live in Greater Centre City, Philadelphia. That means lots of tall buildings. But if I look out my window, the tall buildings nearer me block my view of the buildings behind. That same approach holds true in this graphic. The tall red columns in southeastern Massachusetts block those of eastern and northeastern parts of the state and parts of New Hampshire as well. Even if we can still see the tops of the columns, we cannot see the bases and thus any real meaningful comparison is lost.

Second: distance. Pretty simple here as well, later today go outside. Look at things on your horizon. Note that those things, while perhaps tall such as a tree or a skyscraper, look relatively small compared to those things immediately around you. Same applies here. Bars of the same data, when at opposite ends of the map, will appear sized differently. Below I took the above screenshot and highlighted two observations that differed in only 0.5 inches of snow. But the box I had to draw—a rough proxy for the columns’ actual heights—is 44% larger.

These bars should be about the same.

This map probably looks cool to some people with its three-dimensional perspective and bright colours on a dark grey map. But it fails where it matters most: clearly presenting the regional differences in accumulation of snowfall amounts.

Compare the above to this graphic from the Boston office of the National Weather Service (NWS).

No, it does not have the same cool factor. And some of the labelling design could use a bit of work. But the use of a flat, two-dimensional map allows us to more clearly compare the ranges of snowfall and get a truer sense of the geographic patterns in this weekend’s storm. And in doing so, we can see some of the subtleties, for example the red pockets of greater snowfall amounts amid the wider orange band.

Credit for the Globe piece goes to John Hancock.

Credit for the NWS piece goes to the graphics department of NWS Boston.

I Call Them Life Tiles

Happy Friday, everyone. Here in the United States’ Northeast Corridor we’re looking forward to a potentially powerful nor’easter that could be the first real snowstorm to hit Philadelphia all winter. (Dumb La Niña.)

But I’ve also recently started working in a new sketchbook. (It happens often.) But that’s why I thought this graphic from Indexed would work for me. I am often sketching out notes, concepts, still lifes, whatever else and I now have a neat little collection of used sketchbooks.

But my sketchbooks are always worth my time and that’s why I always save them.

Credit for the piece goes to Jessica Hagy.